Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 111(6): 69, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945967

RESUMEN

Tomato, Lycopersicon esculentum L. is grown widely as an important day-to-day demand vegetable. The crop is attacked by various polyphagous insect pests like tomato fruit borer, stink bug, cabbage looper, flea beetle, aphids, whitefly, two-spotted spider mite, etc., and oligophagous insects like leaf-miner, five-spotted hawkmoth, etc. To combat the damage and yield loss, various chemical insecticides were sprayed on tomatoes under field conditions. The residual pattern of insecticides like chlorantraniliprole, thiamethoxam, flubendiamide, and deltamethrin residues was studied following applications of chlorantraniliprole 18.5% SC (Coragen) @ 30 g a.i./ha, thiamethoxam 25% WG (Actara) @ 50 g a.i./ha, flubendiamide 39.35 M/M SC (Fame) @ 48 g a.i./ha and deltamethrin 2.8% EC (Decis 100) @ 12.5 g a.i./ha using Reverse Phase High-Performance Liquid Chromatography (RP-HPLC). Fruit samples were collected at 0 (1 h after application), 1, 2, 3, 5, 7 days and at harvest time. All the residues of insecticides such as chlorantraniliprole (0.09 mg kg- 1), thiamethoxam (0.03 mg kg- 1), flubendiamide (0.02 mg kg- 1), and deltamethrin (0.01 mg kg- 1) were persisted up to 5th day. There were no residues found at harvest time. The residues of chlorantraniliprole and deltamethrin persisted up to 3rd day of spraying whereas the residues of flubendiamide and thiamethoxam were not detected on the same day in the soil.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Solanum lycopersicum , Tiametoxam/análisis , Insecticidas/análisis , Suelo/química , Frutas/química , Benzamidas/análisis , Residuos de Plaguicidas/análisis
2.
Front Nutr ; 10: 1039965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937364

RESUMEN

The eastern Himalayas, one of the important hotspots of global biodiversity, have a rich diversity of wild edible fruit trees. The fruits of these tree species have been consumed by the tribal people since time immemorial. However, there is limited information available on the biochemical and antioxidant properties of the fruits. Therefore, the present investigation was undertaken to study the physico-chemical and antioxidant properties of the nine most important wild fruit trees. Among the species, Pyrus pashia had the maximum fruit weight (37.83 g), while the highest juice (43.72%) and pulp content (84.67%) were noted in Haematocarpus validus and Myrica esculenta, respectively. Maximum total soluble solids (18.27%), total sugar (11.27%), moisture content (88.39%), ascorbic acid content (63.82 mg/100 g), total carotenoids (18.47 mg/100 g), and total monomeric anthocyanin (354.04 mg/100 g) were recorded in H. validus. Docynia indica had the highest total phenolic content (19.37 mg GAE/g), while H. validus recorded the highest total flavonoids and flavanol content. The antioxidant activities of the different fruits ranged from 0.17 to 0.67 IC50 for DPPH activity and 3.59-13.82 mg AAE/g for FRAP. These fruits had attractive pigmentation of both pulp and juice and were a good potential source for the extraction of natural edible color in the food industry. The fruits also possess high market prices; Prunus nepalensis fetched $ 34.10-$ 141.5 per tree. Therefore, these fruits are rich sources of antioxidants, pigments and have a high market value for livelihood and nutritional security.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA