Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Front Plant Sci ; 15: 1386494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022610

RESUMEN

Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38918975

RESUMEN

Cancer is one of the most complicated and prevalent diseases in the world, and its incidence is growing worldwide. Natural products containing pharmacological activity are widely used in the pharmaceutical industry, especially in anticancer drugs, due to their diverse structures and distinctive functional groups that inspire new drug results by means of synthetic chemistry. Terrestrial medicinal plants have traditionally been the primary source for developing natural products (NPs). However, over the past thirty years, marine organisms such as invertebrates, plants, algae, and bacteria have revealed many new pharmaceutical compounds known as marine NPs. This field constantly evolves as a discipline in molecular targeted drug discovery, incorporating advanced screening tools that have revolutionised and become integral to modern antitumor research. This review discusses recent studies on new natural anticancer alkaloids obtained from marine organisms. The paper illustrates the structure and origin of marine alkaloids and demonstrates the cytotoxic action of new alkaloids from several structural families and their synthetic analogs. The most recent findings about the potential or development of some of them as novel medications, together with the status of our understanding of their current mechanisms of action, are also compiled.

3.
Plant Biotechnol J ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923713

RESUMEN

Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.

4.
Anal Methods ; 16(27): 4551-4560, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38912555

RESUMEN

In this paper, a coumarin-based Schiff base chemosensor has been synthesized and developed to detect Cu2+ and Zn2+ ions in nanomolar concentrations. The probe selectively distinguishes Cu2+ and Zn2+ from among several metal ions in DMF : H2O (7 : 3, v/v, pH 7.4) HEPES buffer. The structure of the probe and its sensing behavior were investigated by FT-IR, UV-vis, fluorescence, HRMS, and NMR analyses, along with X-ray crystallography and computational studies. CIH detects Zn2+ and Cu2+ using different strategies: CHEF-induced fluorescence enhancement and paramagnetic fluorescence quenching, respectively. Job's plots show a 1 : 1 binding interaction between CIH and Cu2+ or Zn2+ ions. The binding constant values for Cu2+ (1.237 × 105 M-1) and Zn2+ (1.24 × 104 M-1) suggest a better ability for Cu2+ to interact with CIH than Zn2+. An extremely high sensitivity of the probe was highlighted by its very low detection limits (LOD) of 5.36 nM for Cu2+ and 3.49 nM for Zn2+. The regeneration of the probe with the addition of EDTA in its complexes allows the formation of molecular logic gates. CIH has been successfully employed in mitotracking and intracellular detection of Zn2+ and Cu2+ in SiHa cells.


Asunto(s)
Cobre , Cumarinas , Colorantes Fluorescentes , Bases de Schiff , Zinc , Zinc/análisis , Zinc/química , Cumarinas/química , Cobre/análisis , Cobre/química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Bases de Schiff/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Imagen Óptica/métodos
6.
Int J Surg Case Rep ; 120: 109870, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851074

RESUMEN

INTRODUCTION AND IMPORTANCE: Cutaneous leiomyomas, benign tumors from smooth muscle fibers, constitute about 5 % of all leiomyomas. They exhibit diverse inheritance patterns and can be linked to systemic malignancies. Gastrointestinal stromal tumors (GISTs), arising from the interstitial cells of Cajal, are the most common mesenchymal tumors in the gastrointestinal tract. Despite their prevalence, simultaneous occurrences of cutaneous leiomyomas and GISTs are rare, necessitating exploration of their potential relationship. CASE PRESENTATION: A 25-year-old male with no significant medical history presented with multiple painful erythematous nodules on his chest, upper back, and arms. Histopathological analysis diagnosed these as multiple cutaneous piloleiomyomatosis. Despite recommendations for surgical intervention, the patient chose medical management and experienced significant pain relief with nifedipine. Later, the development of abdominal symptoms led to the discovery of multiple gastric lesions, diagnosed as benign spindle cell neoplasms, necessitating partial gastrectomy. CLINICAL DISCUSSION: The differential diagnosis of cutaneous leiomyomas includes various soft tissue tumors, requiring histopathological confirmation. Genetic mutations affecting proteins critical to cellular energy production and tumor suppression underlie these conditions. Treatment options include pharmacological management and surgical excision. The discovery of GISTs in this patient aligns with rare literature reports, emphasizing the need for vigilant evaluation of systemic malignancies in patients with leiomyomatosis. CONCLUSION: This case highlights the potential of cutaneous leiomyomas to indicate deeper malignancies like GISTs, stressing the importance of interdisciplinary collaboration in diagnosis and treatment. It underscores the interconnectedness of benign dermatological conditions and internal malignancies, advocating for comprehensive evaluation in patients with leiomyomatosis. METHODS: This case report meticulously follows the SCARE 2023 guidelines: updating consensus Surgical Case Report guidelines (Sohrabi et al., 2023 [1]). These guidelines ensure high-quality reporting in surgical case reports. The report details the evaluation, diagnosis, and a comprehensive review of the literature pertaining to a patient with multiple leiomyoma cutis associated with gastrointestinal stromal tumors. By employing a multidisciplinary approach, this report achieves a thorough and standardized presentation of the case, serving as an additional tool for raising awareness regarding such rare conditions.

7.
Drug Discov Today ; 29(7): 104049, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830505

RESUMEN

Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.


Asunto(s)
Micobacteriófagos , Humanos , Animales , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis , Terapia de Fagos/métodos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/terapia , Infecciones por Mycobacterium/terapia , Infecciones por Mycobacterium/tratamiento farmacológico
8.
PLoS One ; 19(5): e0302870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776345

RESUMEN

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Asunto(s)
Genoma de Planta , Genotipo , Mutación INDEL , Lens (Planta) , Sitios de Carácter Cuantitativo , Lens (Planta)/genética , Lens (Planta)/crecimiento & desarrollo , Marcadores Genéticos , Reacción en Cadena de la Polimerasa/métodos , Mapeo Cromosómico/métodos
9.
BMC Plant Biol ; 24(1): 379, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720284

RESUMEN

BACKGROUND: Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS: The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION: This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.


Asunto(s)
Flores , Estudio de Asociación del Genoma Completo , Semillas , Transcriptoma , Semillas/genética , Semillas/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Vigna/genética , Vigna/crecimiento & desarrollo , Genes de Plantas , Genotipo , Perfilación de la Expresión Génica , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Fenotipo
10.
Med Oncol ; 41(6): 130, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676780

RESUMEN

The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein-protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Simulación del Acoplamiento Molecular , Farmacología en Red , Estigmasterol , Estigmasterol/análogos & derivados , Humanos , Estigmasterol/farmacología , Estigmasterol/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Simulación por Computador
11.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592842

RESUMEN

Amaranthus is a genus of C4 dicotyledonous herbaceous plant species that are widely distributed in Asia, Africa, Australia, and Europe and are used as grain, vegetables, forages, and ornamental plants. Amaranth species have gained significant attention nowadays as potential sources of nutritious food and industrial products. In this study, we performed a comparative genome analysis of five amaranth species, namely, Amaranthus hypochondriacus, Amaranthus tuberculatus, Amaranthus hybridus, Amaranthus palmeri, and Amaranthus cruentus. The estimated repeat content ranged from 54.49% to 63.26% and was not correlated with the genome sizes. Out of the predicted repeat classes, the majority of repetitive sequences were Long Terminal Repeat (LTR) elements, which account for about 13.91% to 24.89% of all amaranth genomes. Phylogenetic analysis based on 406 single-copy orthologous genes revealed that A. hypochondriacus is most closely linked to A. hybridus and distantly related to A. cruentus. However, dioecious amaranth species, such as A. tuberculatus and A. palmeri, which belong to the subgenera Amaranthus Acnida, have formed their distinct clade. The comparative analysis of genomic data of amaranth species will be useful to identify and characterize agronomically important genes and their mechanisms of action. This will facilitate genomics-based, evolutionary studies, and breeding strategies to design faster, more precise, and predictable crop improvement programs.

12.
Indian J Clin Biochem ; 39(2): 197-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577136

RESUMEN

Tuberculosis (TB) is a challenging public health issue, particularly in poor and developing countries. Rifampicin (RIF) is one of the most common first-line anti-TB drugs but it is known for its adverse effects on the hepato-renal system. The present study investigated the efficacy of morin hydrate (MH) in protecting hepato-renal damage inflicted by RIF in rats. RIF (50 mg/kg), and a combination of RIF (50 mg/kg) and MH (50 mg/kg) were administered orally for 4 weeks in rats. Silymarin (50 mg/kg) was used as a positive control. Increased levels of serological parameters such as AST, ALT, ALP, LDH, GGT, bilirubin, triglyceride, total cholesterol, urea, uric acid, creatinine, TNF-α, IFN-γ, IL-6 along with the decreased level of IL-10, total protein and albumin were used as markers of hepatic and renal injury. Oxidative damage in the tissues was measured by the increase in lipid peroxidation and decline in GSH, SOD and catalase activities. Histopathology of liver slices was used to study hepatic architecture. Four-week RIF treatment produced altered serological parameters with an increase in pro-inflammatory cytokines in serum suggesting hepatotoxicity and nephrotoxicity. The antioxidant status of the liver and kidney (increased lipid peroxidation and decline in GSH, SOD and catalase) was compromised. Cellular damage and necrosis were observed in liver slices. MH supplementation with RIF improved hepato-renal functions by restoring the serum and tissue markers towards normal values. Histological observations authenticated the results. MH supplementation also reduced the production of pro-inflammatory cytokines. Thus, the results revealed that MH provides protection against RIF-induced hepato-renal injury.

13.
Environ Sci Pollut Res Int ; 31(28): 40324-40351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483718

RESUMEN

Groundwater is widely regarded as being among the freshwater natural resources with the lowest levels of contamination. Nevertheless, the saltwater intrusion has resulted in the contamination of groundwater in coastal regions with lower elevation. The rationale of the present work is to investigate the chemistry of groundwater, to identify the various facies of groundwater, to identify the processes that influence groundwater chemistry and saltwater intrusion, and to evaluate the groundwater's aptness for use in drinking and farming. In order to gain an understanding of the groundwater quality as well as the salinization process that occurs in coastal aquifers as a result of hydrogeochemical processes, a total of 108 groundwater samples (54 each in pre- and post-monsoon) were taken and analyzed for several physiochemical parameters in the southern part of the Puri district in the Indian state of Odisha. The data has undergone analysis and examination to identify the factors (such as hydrological facies, potential solute source in water, and salinization process) that contribute to groundwater salinity. The result showed the chemistry controlling processes of rock-water interaction as per Gibbs diagram. The majority of shallow aquifers exhibit the Na-Cl type of facies as per the Piper plot. A total of 37% pre-monsoon and 33% post-monsoon samples having Na+/Cl- ratio below the threshold of 0.86 indicating the influence of saltwater intrusion. In both seasons, it was observed that 74% of the samples exhibited a Na+ concentration that exceeded the permissible limit set by the World Health Organization (WHO) for drinking purposes. The findings indicate that most groundwater failed to pass safe drinking water and irrigation standards due to saltwater intrusion. Consequently, the monitoring of coastal aquifer quality has become imperative in order to ensure the sustainability of aquifers and the development of groundwater resources. This is because coastal aquifers are highly vulnerable to saltwater intrusion, primarily as a result of the extensive extraction of groundwater for diverse purposes.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Agua Subterránea/química , India , Salinidad , Contaminantes Químicos del Agua/análisis
14.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486459

RESUMEN

The opportunistic bacterium Acinetobacter baumannii, which belongs to ESKAPE group of pathogenic bacteria, is leading cause of infections associated with gram-negative bacteria. Acinetobacter baumannii causes severe diseases, such as VAP (ventilator-associated pneumonia), meningitis, and UTI (urinary tract infections) among the nosocomial infections contracted in hospitals. The high infection rate and growing resistance to the vast array of antibiotics makes it paramount to look for new therapeutic strategies against this pathogen. The most promising therapeutic targets are the proteins involved in the synthesis of peptidoglycan which is chief component of bacterial cell wall, MurE is one of those enzymes and is responsible for the addition of one unit of meso-diaminopimelic acid (meso-A2pm) to the nucleotide precursor, UDPMurNAc-L-Ala-D-Glu, and aids in the formation of crosslinker pentapeptide chain. The three-dimensional structure of MurE was modelled using homology modelling technique and then vHTS was performed using this model against Approved Drug Library on DrugRep server using AutoDock Vina. Out of 500 drug molecules, two were selected based on estimated binding affinity, interaction pattern, interacting residues, etc. The selected drug molecules are DB12887 (Tazemetostat) and DB13879 (Glecaprevir). Then, MD simulations were performed on native MurE and its complexes with ligands to examine their dynamical behaviour, stability, integrity, compactness, and folding properties. The protein-ligand complexes were then subjected to binding free energy calculations using the MM/PBSA-based binding free energy analysis and the values are -109.788 ± 8.03 and -152.753 ± 11.98 kcal for MurE-DB12887 and MurE-DB13879 complex, respectively. All the analysis performed on MD trajectories for the complexes of these ligands with protein provided plenty of dependable evidences to consider these molecules for inhibition of MurE enzyme from A. baumannii. Communicated by Ramaswamy H. Sarma.

15.
Environ Sci Pollut Res Int ; 31(13): 19105-19122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38376781

RESUMEN

The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem. They undergo diverse potential transformations because of their unique physiochemical properties and the feature of receiving medium. Therefore, assessment of their impact is critical not only for scavenging the present situation but also for preventing unintended environmental hazards. Algae being a primary producer of the aquatic ecosystem help assess the risk of massive NPs usage in environmental health. Because of their nutritional needs and position at the base of aquatic food webs, algal indicators exhibit relatively unique information concerning ecosystem conditions. Moreover, algae are presently the most vital part of the circular economy. Hence, it is imperative to understand the physiologic, metabolic, and morphologic changes brought by the ZnO NPs to the algal cells along with the development of the mechanism imparting toxicity mechanism. We also need to develop an appropriate scientific strategy in the innovation process to restrain the exposure of NPs at safer levels. This review provides the details of ZnO NP interaction with algae. Moreover, their impact, mechanism, and factors affecting toxicity to the algae are discussed.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Ecosistema , Nanopartículas/química , Nanopartículas del Metal/toxicidad
16.
Int J Surg Case Rep ; 116: 109355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325110

RESUMEN

INTRODUCTION AND IMPORTANCE: Filariasis, predominantly caused by the parasite Wuchereria Bancrofti, is a key etiological factor in lymphedema development. Lymphedema, characterized by persistent lymphatic obstruction, leads to significant changes in immunological factors and protein composition. These alterations play a crucial role in the delayed diagnosis of squamous cell carcinoma within chronic lymphedema contexts. Notably, chronic lymphedema is an infrequent but significant precursor to squamous cell carcinoma, with fewer than 20 cases reported in medical literature, including only 11 cases affecting the lower limbs. The management of squamous cell carcinoma in lymphedema is challenging due to the rarity of cases and the resulting lack of experience among clinicians. CASE PRESENTATION: The report focuses on a 69-year-old woman with long-standing right lower limb lymphedema following filariasis. She underwent treatment for a non-healing ulcer in the right gluteal region, diagnosed as moderately differentiated squamous cell carcinoma. Following a wide local excision with primary closure, her lower limb swelling persisted, and subsequent diagnosis confirmed regional lymph node metastasis. The patient was then considered for immunotherapy. CLINICAL DISCUSSION: This case emphasizes the link between chronic lymphedema and squamous cell carcinoma. It highlights the necessity for a multidisciplinary approach for timely and effective treatment, addressing the rarity and complexity of such cases. CONCLUSION: The successful application of immunotherapy in this case illustrates a favorable clinical outcome, marking a significant advancement in treating similar conditions. This finding contributes to the evolving knowledge in this medical field, suggesting immunotherapy as a promising treatment option. METHODS: This case report meticulously follows the SCARE 2023 guidelines: updating consensus Surgical Case Report guidelines (Sohrabi et al., 2023) [1]. These guidelines ensure high-quality reporting in surgical case reports. The report details the evaluation, diagnosis, and a comprehensive review of the literature pertaining to a patient with squamous cell carcinoma of the skin and regional nodal metastasis, which developed in the context of post-filariasis chronic lower limb lymphedema. By employing a multidisciplinary approach, this report achieves a thorough and standardized presentation of the case, serving as a benchmark and an additional tool for raising awareness about such rare medical conditions.

17.
3 Biotech ; 14(3): 72, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362590

RESUMEN

The emergence of carbapenem-resistant Acinetobacter baumannii, a highly concerning bacterial species designated as a Priority 1: Critical pathogen by the WHO, has become a formidable global threat. In this study, we utilised computational methods to explore the potent molecules capable of inhibiting the IspC enzyme, which plays a crucial role in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. Employing high-throughput virtual screening of small molecules from the Enamine library, we focused on the highly conserved substrate binding site of the DXR target protein, resulting in the identification of 1000 potential compounds. Among these compounds, we selected the top two candidates (Z2615855584 and Z2206320703) based on Lipinski's rule of Five and ADMET filters, along with FR900098, a known IspC inhibitor, and DXP, the substrate of IspC, for molecular dynamics (MD) simulations. The MD simulation trajectories revealed remarkable structural and thermodynamic stability, as well as strong binding affinity, for all the IspC-ligand complexes. Furthermore, binding free energy calculations based on MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) methodology demonstrated significant interactions between the selected ligand molecules and IspC. Taking into consideration all the aforementioned criteria, we suggest Z2206320703 as the potent lead candidate against IspC. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03923-w.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38393580

RESUMEN

Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.

19.
Curr Res Struct Biol ; 7: 100127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322649

RESUMEN

Acinetobacter baumannii is one of the emerging causes of hospital acquired infections and this bacterium, due to multi-drug resistant and Extensive Drug resistant has been able to develop resistance against the antimicrobial agents that are being used to eliminate it. A.baumannii has been the cause of death in immune compromised patients in hospitals. Hence it is the urgent need of time to find potential inhibitors for this bacterium to cease its virulence and affect its survival inside host organisms. The Dihydrofolate reductase enzyme, which is an important biocatalyst in the conversion of Dihydrofolate to Tetrahydrofolate, is an important drug target protein. In the present study high throughput screening is used to identify the inhibitors of this enzyme. The prioritized ligand molecular candidates identified through virtual screening for the substrate binding site of the predicted model are Z1447621107, Z2604448220 and Z1830442365. The Molecular Dynamics Simulation study suggests that potential inhibitor of the Dihydrofolate reductase enzyme would prevent bacteria from completing its life cycle, affecting its survival. Finally the complexes were analysed for binding free energy of the Dihydrofolate reductase enzyme complexes with the ligands.

20.
Mol Biol Rep ; 51(1): 283, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324135

RESUMEN

BACKGROUND: Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS: In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION: These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.


Asunto(s)
Eleusine , Termotolerancia , Genotipo , Perfilación de la Expresión Génica , Proteínas de Choque Térmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...