Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(39): 26767-26778, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37781849

RESUMEN

Single isolated molecules and supramolecular host-guest systems, which consist of π-π stacking interactions, are emerging as promising building blocks for creating molecular electronic devices. In this article, we have investigated the noncovalent π-π interaction and intermolecular electron charge transport involved in a series of host-guest complexes formed between a cage-like host (H6+) and polycyclic aromatic hydrocarbon (PAH) guests (G1-G7) using different quantum chemical approaches. The host (H6+) consists of two triscationic π-electron-deficient trispyridiniumtriazine (TPZ3+) units that are bridged face-to-face by three ethylene-triazole-ethylene. Our theoretical calculations show that the perylene and naphthalene inclusion complexes G7⊂H and G1⊂H have the highest and lowest interaction energies, respectively. In addition, energy decomposition analysis (EDA) indicated that the dispersion interaction term, ΔEdisp, significantly contributes to the host-guest interaction and is correlated with the existence of π-π van der Waals interaction. Using the nonequilibrium Greens function (NEGF) method in combination with density functional theory (DFT), the current-voltage (I-V) curves of the complexes were estimated. The conductance values increased when the guests were embedded inside the host cavity. Notably, the complex G7⊂H has the maximum conductance value. Overall, this study provided the electron transport of the PAH inclusion host-guest complex through π-π interaction and provided a direction for the fabrication of future supramolecular molecular devices.

2.
Chemphyschem ; 24(23): e202300413, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712533

RESUMEN

The importance of noncovalent interaction has gained attention in various domains covering drug and novel catalyst design. The present study mainly characterizes the role of hydrogen bond (H-bond) and other intermolecular interactions in different (1 : 1) complex analogues formed between the N-aryl-thiazol-2-ylidene (YR) and five proton donor (HX) molecules. The analysis of the singlet-triplet energy gap ( Δ E S - T ${{\rm{\Delta }}E_{\left( {S - T} \right)} }$ ) confirmed the stability of the singlet state for this class of N-aryl-thiazol-2-ylidenes than the triplet state. The interaction energy values of the YR-HX complexes follow the order: YR-NH3

3.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610422

RESUMEN

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

4.
Int J Biol Macromol ; 248: 125847, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37460075

RESUMEN

Uncontrolled amyloid aggregation is a frequent cause of neurodegenerative disorders such as prions and Alzheimer's disease (AD). As a result, many drug development approaches focus on evaluating novel molecules that can alter self-recognition pathways. Herein, we designed and synthesized the cyclometallated pyrene (Pd-1 and Pd-3) and anthracene (Pd-2) based palladium complexes ([Pd((L1)Cl] Pd-1, [Pd(L2)Cl](Pd-2), and [Pd(L3)Cl] (Pd-3)). This study explores the effect of these complexes on the aggregation, fibrillation, and amyloid formation of bovine serum albumin (BSA) and Aß1-42 peptide. Several spectroscopic methods were used to characterize all the Pd-complexes, and the molecular structure of Pd-3 was determined by X-ray crystallography. The secondary structures were studied using circular dichroism (CD) and transmission electron microscopy (TEM), while amyloid aggregation and inhibitory activities were investigated using the Thioflavin-T (ThT) fluorescence assay. Molecular docking of the Pd-complex (Pd-3) was done using fibril (PDB: 2BEG) and monomeric (PDB: 1IYT) peptides using Auto-dock Vina. As a result, the hydrogen bonding and hydrophobic interaction between the aromatic rings of the Pd-complexes and the amino acids of amyloid-ß peptides significantly reduced the production of ordered ß-sheets of amyloid fibrils and protein aggregation in the presence of Pd-2 and Pd-3 complexes.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Paladio , Fragmentos de Péptidos/química , Simulación del Acoplamiento Molecular , Receptor de Muerte Celular Programada 1 , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Dicroismo Circular
5.
Int J Biol Macromol ; 239: 124197, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972817

RESUMEN

Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prion, and Parkinson's diseases. Ruthenium (Ru) complexes have received considerable attention in studying protein aggregation due to their interesting photophysical and photo properties. In this study, we have synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aß1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize these complexes, and the molecular structure of the complex was determined by X-ray crystallography. Amyloid aggregation and inhibition activities were examined using the Thioflavin-T (ThT) assay, and the secondary structures of the protein were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the complex Ru-2 showed better protective effects against Aß1-42 peptide toxicity on neuro-2a cells than the complex Ru-1. Molecular docking studies elucidate the binding sites and interactions between the Ru-complexes and Aß1-42 peptides. The experimental studies revealed that these complexes significantly inhibited the BSA aggregation and Aß1-42 amyloid fibril formation at 1:3 and 1:1 molar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aß1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.


Asunto(s)
Complejos de Coordinación , Rutenio , Humanos , Péptidos beta-Amiloides/metabolismo , Agregado de Proteínas , Rutenio/farmacología , Rutenio/química , Simulación del Acoplamiento Molecular , Proteínas Amiloidogénicas , Amiloide/metabolismo , Complejos de Coordinación/química
6.
Chemphyschem ; 24(11): e202200928, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749709

RESUMEN

Noncovalent interactions due to the presence of heteroatoms in supramolecular compounds have gained a lot of attention. These different heteroatom-based supramolecular compounds have inspired us to examine the noncovalent interaction in the isolated host and host-guest complexes. In view of this, in the current manuscript, we investigated the stability and torsional energy barrier of different conformers of the ditopic receptor host 1,6-bis(2,6-bis(benzothiazol-2-yl) pyridine-4-yloxy) hexane (bbh). The conformer that is accompanied by intramolecular C-H⋯N and C-H⋯S interactions is relatively more stable than the others. Due to torsional angle rotation within the host, the C-H⋯N and C-H⋯S interactions get disrupted and exhibit different binding sites for capturing guest molecules. In addition, we have extended the investigation to understand the interaction energy and nature of interaction in host-guest (1 : 1 and 1 : 2) complexes formed between the host (bbh) and guest (resorcinol) by using different DFT functionals. Extended transition state-natural orbital chemical valence (ETS-NOCV) analysis of complexes revealed that the electrostatic interaction significantly contributes to the host-guest interaction energy. The noncovalent (NCI) analysis provides the existence of intermolecular hydrogen bonding and other weak interactions within the complexes.

7.
Chemphyschem ; 24(3): e202200727, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281900

RESUMEN

The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (-F) and donating (-CH3 ) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the -CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to -F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with -F or -CH3 , the conversion proceeds via the conrotatory pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...