Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 355(6): e2200033, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315115

RESUMEN

A novel series of triazole-linked isatin-indole-3-carboxaldehyde hybrids based on the febuxostat skeleton and its binding site interactions were rationally designed and synthesized as potential xanthine oxidase inhibitors. Among the synthesized hybrids, A19 showed the most potent xanthine oxidase inhibition (IC50 = 0.37 µM) with the mixed-type inhibitory scenario. Structure-activity relationship studies revealed that methoxy (OCH3 ) substitution on position 5 of the isatin nucleus and a two-carbon distance between isatin and the triazole moiety is most tolerable for the inhibitory potential. Various binding interactions of A19 with the binding site of xanthine oxidase are also streamlined by molecular docking studies, which showcase the favorable binding pattern for xanthine oxidase inhibition by the hybrid. Furthermore, molecular dynamic studies were performed that suggest the stability of the enzyme-hybrid complex. Overall, the study suggests that hybrid A19 can act as an effective hit lead for further development of potent xanthine oxidase inhibitors.


Asunto(s)
Isatina , Xantina Oxidasa , Inhibidores Enzimáticos/química , Indoles , Isatina/química , Isatina/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Triazoles/farmacología
2.
Mol Divers ; 25(1): 551-601, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32170466

RESUMEN

GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABAA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.


Asunto(s)
Diseño de Fármacos , Moduladores del GABA/síntesis química , Moduladores del GABA/farmacología , Animales , Ensayos Clínicos como Asunto , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Receptores de GABA/química , Receptores de GABA/metabolismo
3.
Medchemcomm ; 10(1): 128-147, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931089

RESUMEN

Two series of benzoflavone derivatives were rationally designed, synthesized and evaluated for their xanthine oxidase (XO) inhibitory potential. Among both series, eight compounds (NF-2, NF-4, NF-9, NF-12, NF-16, NF-25, NF-28, and NF-32) were found to exert significant XO inhibition with IC50 values lower than 10 µM. Enzyme kinetic studies revealed that the most potent benzoflavone derivatives (NF-4 and NF-28) are mixed type inhibitors of the XO enzyme. Molecular modeling studies were also performed to investigate the binding interactions of these molecules (NF-4 and NF-28) with the amino acid residues present in the active site of the enzyme. Docking results confirmed that their favorable binding conformations in the active site of XO can completely block the catalytic activity of the enzyme. Benzoflavone derivatives exhibiting potent XO enzyme inhibition also showed promising results in a hyperuricemic mice model when tested in vivo.

4.
Medchemcomm ; 9(3): 490-502, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108939

RESUMEN

In a continued effort to develop potent cholesterol esterase (CEase) inhibitors, a series of 5,6-benzoflavone derivatives was rationally designed and synthesized by changing the position of the benzene ring attached to the flavone skeleton in previously reported 7,8-benzoflavones. All the synthesized compounds were checked for their inhibitory potential against cholesterol esterase (CEase) using a spectrophotometric assay. Among the series of forty compounds, seven derivatives (B-10 to B-16) exhibited above 90 percent inhibition against CEase in an in vitro enzymatic assay. Compound B-16 showed the most promising activity with an IC50 value of 0.73 nM against cholesterol esterase. To determine the type of inhibition, enzyme kinetic studies were carried out for B-16, which revealed its mixed-type inhibition approach. Moreover, to figure out the key binding interactions of B-16 with the amino acid residues of the enzyme's active site, molecular protein-ligand docking studies were also performed. B-16 completely blocks the catalytic assembly of CEase and prevents it from participating in the ester hydrolysis mechanism. The favorable binding conformation of B-16 suggests its prevailing role as a CEase inhibitor. Overall, the study showed that the cis-orientation of ring A with respect to the carbonyl group of ring C is responsible for the potent CEase inhibitory activity of the newly synthesized compounds.

5.
Bioorg Med Chem Lett ; 27(17): 3974-3979, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28797799

RESUMEN

In an attempt to develop potent anti-tubulin agents against most dreadful disease cancer, a library of 28 novel triazole tethered isatin-coumarin hybrids were synthesized by click chemistry approach. Synthesized hybrids were characterized and evaluated against a panel of human cancer cell lines viz. THP-1, COLO-205, HCT-116 and PC-3. Biological assay unveiled that, compounds A-1 to A-6, B-1 to B-4 and C-1 to C-3 displayed significant inhibitory potential against THP-1, COLO-205 and HCT-116 cell lines which were more sensitive towards the designed hybrids. PC-3 among these cell lines was found to be almost resistant. Established SAR revealed marked dependence of the cytotoxic activity on the type of substituent on isatin and the length of carbon-bridge connecting isatin moiety with triazole ring. Unsubstituted isatin and two carbon-bridge were found to be crucial for cytotoxicity. Three most potent hybrids (A-1, A-2 and B-1) were further tested for tubulin polymerization inhibition. Among these three compounds, A-1 found to be endowed with most prominent tubulin polymerization inhibition potential with IC50 value of 1.06µM which was further confirmed by using confocal microscopy. Possible binding interactions between the most potent hybrid molecule A-1 and tubulin were also divulged by molecular modeling studies.


Asunto(s)
Antineoplásicos/farmacología , Cumarinas/farmacología , Diseño de Fármacos , Isatina/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA