Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 14: 7107-7121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31564868

RESUMEN

BACKGROUND: Cervical cancer (CxCa) ranks as the fourth most prevalent women-related cancer worldwide. Therefore, there is a crucial need to develop newer treatment modalities. Ormeloxifene (ORM) is a non-steroidal, selective estrogen receptor modulator (SERM) that is used as an oral contraceptive in humans. Recent investigations suggest that ORM exhibits potent anti-cancer activity against various types of cancers. Nanoparticulates offer targeted delivery of anti-cancer drugs with minimal toxicity and promise newer approaches for cancer diagnosis and treatment. Therefore, the nanotherapy approach is superior compared to traditional chemotherapy, which is not site-specific and is often associated with various side effects. METHODS: Pursuing this novel nanotherapy approach, our lab has recently developed ORM-loaded poly [lactic-co-glycolic acid] (PLGA), an FDA-approved biodegradable polymer, nanoparticles to achieve targeted drug delivery and improved bioavailability. Our optimized PLGA-ORM nanoformulation showed improved internalization in both dose- and energy-dependent manners, through endocytosis-mediated pathways in both Caski and SiHa cell lines. Additionally, we employed MTS and colony forming assays to determine the short- and long-term effects of PLGA-ORM on these cells. RESULTS: Our results showed that this formulation demonstrated improved inhibition of cellular proliferation and clonogenic potential compared to free ORM. Furthermore, the PLGA-ORM nanoformulation exhibited superior anti-tumor activities in an orthotopic cervical cancer mouse model than free ORM. CONCLUSION: Collectively, our findings suggest that our novel nanoformulation has great potential for repurposing the drug and becoming a novel modality for CxCa management.


Asunto(s)
Benzopiranos/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Benzopiranos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Clonales , Modelos Animales de Enfermedad , Endocitosis/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Hemólisis/efectos de los fármacos , Humanos , Ensayo de Materiales , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Suero/química , Neoplasias del Cuello Uterino/patología
2.
Sci Rep ; 9(1): 10917, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358785

RESUMEN

Selective estrogen receptor modulator drug molecules of triphenylethylene family have gained considerable attention as anti-cancer agents. Despite recent advances in screening and development of HPV vaccines, cervical cancer remains one of the deadliest malignancies as advanced stage metastatic disease is mostly untreatable, thus warrants newer therapeutic strategies. Ormeloxifene (ORM) is a well-known SERM of triphenylethylene family that has been approved for human use, thus represents an ideal molecule for repurposing. In this study, we for the first time have demonstrated the anti-cancerous properties of ormeloxifene in cervical cancer. Ormeloxifene efficiently attenuated tumorigenic and metastatic properties of cervical cancer cells via arresting cell cycle at G1-S transition, inducing apoptosis, decreasing PI3K and Akt phosphorylation, mitochondrial membrane potential, and modulating G1-S transition related proteins (p21, cyclin E and Cdk2). Moreover, ORM repressed the expression of HPV E6/ E7 oncoproteins and restored the expression of their downstream target tumor suppressor proteins (p53, Rb and PTPN 13). As a result, ormeloxifene induces radio-sensitization in cervical cancer cells and caused potent tumor growth inhibition in orthotopic mouse model. Taken together, ormeloxifene represents an alternative therapeutic modality for cervical cancer which may have rapid clinical translation as it is already proven safe for human use.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzopiranos/uso terapéutico , Reposicionamiento de Medicamentos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Desnudos , Proteínas E7 de Papillomavirus/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer Ther ; 16(10): 2267-2280, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28615299

RESUMEN

Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), ß-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3ß. In molecular docking analysis, ormeloxifene showed proficient docking with ß-catenin and GSK3ß. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0-G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 µg/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving ß-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267-80. ©2017 AACR.


Asunto(s)
Benzopiranos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , beta Catenina/genética , Animales , Apoptosis/efectos de los fármacos , Benzopiranos/efectos adversos , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/química
4.
Biomaterials ; 53: 731-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25890768

RESUMEN

Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.


Asunto(s)
Benzopiranos/administración & dosificación , Nanopartículas , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Benzopiranos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Portadores de Fármacos , Femenino , Humanos , Ácido Láctico , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/patología , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Oral Sci ; 53(3): 333-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21959661

RESUMEN

A study was conducted to compare the mean testosterone and bone mineral density (BMD) levels in men with and without tooth loss. Two hundred three male subjects aged 30-65 years satisfying the study criteria were selected and then examined for bone mineral density, testosterone level, clinical attachment loss, probing pocket depth, tooth mobility and tooth loss due to periodontal disease. Statistical analysis was performed using the Statistical Package for Social Sciences (version 15.0) (SPSS Inc., Chicago, Ill, USA), and differences were considered to be significant at P < 0.05. Independent sample "t" test was used to compare the results, and receiver-operator curve (ROC) analysis was performed to obtain the cut-off. The mean testosterone level in subjects without tooth loss was 4.41 ± 2.57, whereas that in subjects with tooth loss was 2.79 ± 1.15 (P = 0.001). The mean BMD in subjects without tooth loss was 0.99 ± 0.13, whereas that in subjects with tooth loss was 0.96 ± 0.12 (P = 0.046). The testosterone level and BMD in subjects with tooth loss were significantly lower than those in subjects without tooth loss. Testosterone is a good predictor of tooth loss, but its efficiency decreases with increasing tooth loss. BMD is not a good predictor of tooth loss.


Asunto(s)
Densidad Ósea/fisiología , Periodontitis Crónica/complicaciones , Testosterona/metabolismo , Pérdida de Diente/etiología , Absorciometría de Fotón , Anciano , Análisis de Varianza , Estudios de Casos y Controles , Periodontitis Crónica/sangre , Periodontitis Crónica/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Curva ROC , Estadísticas no Paramétricas , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA