Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 7(4): 2023-36, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26473927

RESUMEN

The application of next-generation sequencing (NGS) to characterize cancer genomes has resulted in the discovery of numerous genetic markers. Consequently, the number of markers that warrant routine screening in molecular diagnostic laboratories, often from limited tumor material, has increased. This increased demand has been difficult to manage by traditional low- and/or medium-throughput sequencing platforms. Massively parallel sequencing capabilities of NGS provide a much-needed alternative for mutation screening in multiple genes with a single low investment of DNA. However, implementation of NGS technologies, most of which are for research use only (RUO), in a diagnostic laboratory, needs extensive validation in order to establish Clinical Laboratory Improvement Amendments (CLIA) and College of American Pathologists (CAP)-compliant performance characteristics. Here, we have reviewed approaches for validation of NGS technology for routine screening of tumors. We discuss the criteria for selecting gene markers to include in the NGS panel and the deciding factors for selecting target capture approaches and sequencing platforms. We also discuss challenges in result reporting, storage and retrieval of the voluminous sequencing data and the future potential of clinical NGS.

2.
Biochem J ; 377(Pt 3): 685-92, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14533980

RESUMEN

Bovine pancreatic PLA(2) (phospholipase A(2)) is a 14 kDa protein whose structure is highly cross-linked by seven disulphide bonds. We investigated the structural stability of this enzyme by the method of 'disulphide-scrambling' with denaturants such as urea, GdmCl (guanidine hydrochloride), GdmSCN (guanidine thiocyanate) and at high temperatures in the presence of 2-mercaptoethanol (0.2 mM) as thiol initiator. Reverse-phase HPLC was used to follow denaturation. To denature 50% of the native protein, 1.25 M GdmSCN, approx. 3 M GdmCl and higher than 8 M urea were required. Only 20% of the protein was denatured after 2 h at 60 degrees C, whereas complete denaturation was seen after 2 h at 70 degrees C and within 30 min at 80 degrees C. A distinct enhancement of stability was observed when denaturation was conducted in the presence of 10 mM calcium chloride, which has not been reported previously. CD studies of GdmCl denaturation of bovine PLA(2) showed that 2.5 M GdmCl was required to denature 50% of the protein in the presence of 0.2 mM 2-mercaptoethanol (in agreement with the HPLC analysis), whereas 6.4 M GdmCl was necessary to denature 50% of the protein in the absence of a thiol initiator. Conformational stability (Delta G (water)) was estimated to be 8.7 kcal/mol (1 cal=4.184 J) by 'disulphide-intact' denaturation (where 'native' disulphide framework was unaffected) and 2.5 kcal/mol by 'disulphide-scrambling' denaturation (involved breaking of native disulphides and formation of 'non-native' ones). The difference, Delta(Delta G (water)), of 6.2 kcal/mol was the conformational stability contributed by the 'native-framework' of seven disulphides. Using bovine PLA(2) as an example, we have demonstrated a novel comparative technique, where the conformational stability study of a disulphide-containing protein, with a common denaturant, in both the presence and absence of catalytic amounts of a thiol initiator can be used as a convenient method to estimate selectively and quantitatively the actual contribution of the 'native disulphide bond network' towards the global conformational stability of the protein.


Asunto(s)
Disulfuros/química , Fosfolipasas A/química , Animales , Calcio/química , Bovinos , Dicroismo Circular , Coenzimas/química , Disulfuros/metabolismo , Estabilidad de Enzimas , Guanidina/química , Calor , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Conformación Proteica , Desnaturalización Proteica , Termodinámica
3.
Biochim Biophys Acta ; 1597(2): 280-91, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12044906

RESUMEN

Horsegram protease inhibitor belongs to the Bowman-Birk class (BBIs) of low molecular weight (8-10 kDa), disulfide-rich, "dual" inhibitors, which can bind and inhibit trypsin and chymotrypsin either independently or simultaneously. They have seven conserved disulfide bonds. Horsegram BBI exhibits remarkable stability against denaturants like urea, guanidine hydrochloride (GdmCl) and heat, which can be attributed to these conserved disulfide bonds. On reductive denaturation, horsegram BBI follows the "two-state" mode of unfolding where all the disulfide bonds are reduced simultaneously resulting in the fully reduced protein without any accumulation of partially reduced intermediates. Reduction with dithiothreitol (DTT) followed apparent first-order kinetics and the rate constants (k(r)) indicated that the disulfide bonds were "hyperreactive" in nature. Oxidative refolding of the fully reduced and denatured inhibitor was possible at very low protein concentration in the presence of "redox" combination of reduced and oxidized glutathiones. Simultaneous recovery of trypsin and chymotryptic inhibitory activities indicated the concomitant folding of both the inhibitory subdomains. Folding efficiency decreased in the absence of the glutathiones and in the presence of denaturants (6 M urea and 4 M GdmCl), indicating the importance of disulfide shuffling and the formation of noncovalent interactions and secondary structural elements, respectively, for folding efficiency. Folding rate was significantly improved in the presence of protein disulfide isomerase (PDI). A 3-fold enhancement of rate was observed in the presence of PDI at molar ratio of 1:20 (PDI/inhibitor), indicating that disulfide bond formation and isomerization to be rate limiting in folding. Peptide prolyl cis-trans isomerase (PPI) did not affect rate at low concentrations, but at molar ratios of 1:1.5 (PPI/inhibitor), there was 1.4-fold enhancement of the folding rate, indicating that the prolyl imidic bond isomerizations may be slowing down the folding reaction but were not rate limiting.


Asunto(s)
Fabaceae/química , Inhibidores de Tripsina/química , Secuencia de Aminoácidos , Dicroismo Circular , Disulfuros/química , Ditiotreitol , Fabaceae/genética , Cinética , Datos de Secuencia Molecular , Estructura Molecular , Oxidación-Reducción , Desnaturalización Proteica , Pliegue de Proteína , Renaturación de Proteína , Reactivos de Sulfhidrilo , Inhibidor de la Tripsina de Soja de Bowman-Birk/química , Inhibidor de la Tripsina de Soja de Bowman-Birk/genética , Inhibidores de Tripsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...