Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
EXCLI J ; 23: 991-1017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253534

RESUMEN

One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).

2.
Life Sci ; : 123056, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277133

RESUMEN

Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.

3.
Brain Res ; 1845: 149202, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216694

RESUMEN

Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.

4.
Curr Med Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39162280

RESUMEN

Liquiritin (LIQ), a bioactive flavonoid from Glycyrrhiza species, has shown significant potential in cancer therapy. LIQ exhibits potent inhibitory effects on various cancer cell types, including breast, lung, liver, and colon cancers, while demonstrating low toxicity towards healthy cells. Its anticancer mechanisms include inducing cell cycle arrest, promoting apoptosis, and modulating inflammation-related pathways. Additionally, LIQ impedes angiogenesis and enhances the efficacy of conventional chemotherapies through sensitization and synergistic effects with other natural compounds and targeted therapies. These multifaceted actions highlight LIQ as a promising candidate for further development as an anticancer agent. This abstract provides an overview of LIQ's chemistry, biological effects, and underlying mechanisms.

5.
Pathol Res Pract ; 261: 155490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126977

RESUMEN

Pyroptosis is an inflammatory programed cell death process that plays a crucial role in cancer therapeutic, while Gasdermin-D is a critical effector protein for pyroptosis execution. This review discusses the intricate interactions between Gasdermin-D and some non-coding RNAs (lncRNA, miRNA, siRNA) and their potential application in the regulation of pyroptosis as an anticancer therapy. Correspondingly, these ncRNAs significantly implicate in Gasdermin-D expression and function regarding the pyroptosis pathway. Functioning as competing endogenous RNAs (ceRNAs), these ncRNAs might regulate Gasdermin-D at the molecular level, underlying fatal cell death caused by cancer and tumor propagation. Therefore, these interactions appeal to therapeutics, offering new avenues for cancer treatment. It address this research gap by discussing the possible roles of ncRNAs as mediators of gasdermin-D regulation. It suggest therapeutic strategies based on the current research findings to ensure the interchange between the ideal pyroptosis and cancer cell death.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Proteínas de Unión a Fosfato , Piroptosis , ARN no Traducido , Piroptosis/fisiología , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Regulación Neoplásica de la Expresión Génica , Gasderminas
6.
Ann Pharm Fr ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089365

RESUMEN

Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremor, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves at the potential of drug delivery systems based on chitosan (CS) to treat PD.

7.
Pathol Res Pract ; 262: 155546, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191194

RESUMEN

Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Antineoplásicos/uso terapéutico , Animales
8.
Artículo en Inglés | MEDLINE | ID: mdl-39126576

RESUMEN

Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.

9.
J Mater Chem B ; 12(33): 7977-8006, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38946466

RESUMEN

The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.


Asunto(s)
Vendajes , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química
10.
iScience ; 27(7): 110185, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39015150

RESUMEN

Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.

11.
Curr Drug Deliv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021184

RESUMEN

The eye is a most delicate organ protected by several complex biological barriers that are static and dynamic. The presence of these ocular barriers retards drug absorption from topically applied dosage forms at the conjunctival sac. The efficient topical delivery of the drug into the globe is more difficult to achieve and there is a need to develop a topical formulation that may reduce the use of injections and increase patient compliance with decreased frequency of administration. In the advancements of research in nanotechnology, nanoemulsions can be used as biocompatible carriers to deliver the drug to the ocular cavity. The lipophilic globules can increase the solubility of hydrophobic cargos which provides increased permeation ability and ocular bioavailability which can sustain drug release and corneal retention. Because of their small size, these formulations do not cause blurring of vision. Nanoemulsions (NEs) over the past decade have been used to treat several ocular diseases in the anterior eye segment. This review summarizes the economic burden, pathology of ocular diseases, formulation considerations for ocular formulations, and recent advances of these NEs as effective carriers for ocular drug delivery highlighting their performance in pre-clinical studies.

12.
Indian J Tuberc ; 71 Suppl 1: S117-S129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39067943

RESUMEN

A large number of people annually lose their lives to tuberculosis (TB), which is an age-old disease caused by the Mycobacterium tuberculosis. The global spread of TB is a concern for all regions. The south-east Asian region recorded 46% of all new TB cases in 2021, followed by the African and western Pacific regions with 23% and 18%, respectively. Researchers are always searching at natural substances for potential alternative therapeutics to tackle the worrisome growth in multi-drug-resistant (MDR) tuberculosis due to the high costs associated with developing new treatments and unfavourable side effects of currently used synthetic pharmaceuticals. Phytochemicals show promising results as a future health aid due to their multi-targeting ability on pathogen cells. In the search for new drug leads, the Ayurvedic and Siddha medical systems have made an extensive use of ethnomedicinal tools, including the use of plants like Amalaki (Emblica officinalis Gaertn.), Guduchi (Tinospora cordifolia willd.), Sariva (Hemidesmus indicus R.Br.), Kustha (Saussurea lappa Falc.), turmeric (Curcuma longa Mal.) and Green tea (Camellia sinensis Linn.). These sources are high in flavonoids, polyphenols, tannins and catechins, has been shown to reduce the risk of TB. In this overview, we look at how natural sources like plants, algae and mushrooms have helped researchers to find new drug leads, and how to back these natural sources through mapping the molecular approaches and other approaches has helped them to defeat MDR.


Asunto(s)
Antituberculosos , Descubrimiento de Drogas , Fitoquímicos , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Medicina Ayurvédica , Fitoterapia
13.
Curr Drug Targets ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988154

RESUMEN

Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers.

14.
NPJ Syst Biol Appl ; 10(1): 73, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997321

RESUMEN

Immunoglobulins (Ig), which exist either as B-cell receptors (BCR) on the surface of B cells or as antibodies when secreted, play a key role in the recognition and response to antigenic threats. The capability to jointly characterize the BCR and antibody repertoire is crucial for understanding human adaptive immunity. From peripheral blood, bulk BCR sequencing (bulkBCR-seq) currently provides the highest sampling depth, single-cell BCR sequencing (scBCR-seq) allows for paired chain characterization, and antibody peptide sequencing by tandem mass spectrometry (Ab-seq) provides information on the composition of secreted antibodies in the serum. Yet, it has not been benchmarked to what extent the datasets generated by these three technologies overlap and complement each other. To address this question, we isolated peripheral blood B cells from healthy human donors and sequenced BCRs at bulk and single-cell levels, in addition to utilizing publicly available sequencing data. Integrated analysis was performed on these datasets, resolved by replicates and across individuals. Simultaneously, serum antibodies were isolated, digested with multiple proteases, and analyzed with Ab-seq. Systems immunology analysis showed high concordance in repertoire features between bulk and scBCR-seq within individuals, especially when replicates were utilized. In addition, Ab-seq identified clonotype-specific peptides using both bulk and scBCR-seq library references, demonstrating the feasibility of combining scBCR-seq and Ab-seq for reconstructing paired-chain Ig sequences from the serum antibody repertoire. Collectively, our work serves as a proof-of-principle for combining bulk sequencing, single-cell sequencing, and mass spectrometry as complementary methods towards capturing humoral immunity in its entirety.


Asunto(s)
Linfocitos B , Benchmarking , Proteómica , Receptores de Antígenos de Linfocitos B , Análisis de la Célula Individual , Humanos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Proteómica/métodos , Linfocitos B/inmunología , Análisis de la Célula Individual/métodos , Anticuerpos/inmunología , Anticuerpos/genética , Genómica/métodos , Espectrometría de Masas en Tándem/métodos
15.
Curr Drug Deliv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956909

RESUMEN

BACKGROUND: The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone ( < 15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions. AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity. OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity. METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model. RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 µg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil). CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.

16.
Noncoding RNA Res ; 9(4): 1222-1234, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036600

RESUMEN

Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.

17.
Pathol Res Pract ; 260: 155387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870713

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related mortality, and it is caused by many factors including cigarette smoking. Despite numerous treatment strategies for LC, its five-year survival is still poor (<20 %), attributable to treatment resistance and lack of early diagnosis and intervention. Importantly, LC incidence is higher in patients affected by chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disorder (COPD), and LC shares with other CRDs common pathophysiological features including chronic inflammation, oxidative stress, cellular senescence, and airway remodelling. Remodelling is a complex process resulting from the aberrant activation of tissue repair secondary to chronic inflammation, oxidative stress, and tissue damage observed in the airways of CRD patients, and it is characterized by irreversible airway structural and functional alterations, concomitantly with tissue fibrosis, epithelial-to-mesenchymal transition (EMT), excessive collagen deposition, and thickening of the basement membrane. Many processes involved in remodelling, particularly EMT, are also fundamental for LC pathogenesis, highlighting a potential connection between CRDs and LC. This provides rationale for the development of novel treatment strategies aimed at targeting components of the remodelling pathways. In this study, we tested the in vitro therapeutic activity of rat fecal microbiome extract (FME) on A549 human lung adenocarcinoma cells. We show that treatment with FME significantly downregulates the expression of six proteins whose function is at the forefront between airway remodelling and LC development: Snail, SPARC, MUC-1, Osteopontin, MMP-2, and HIF-1α. The results of this study, if confirmed by further investigations, provide proof-of-concept for a novel approach in the treatment of LC, focused on tackling the airway remodelling mechanisms underlying the increased susceptibility to develop LC observed in CRD patients.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Regulación hacia Abajo , Neoplasias Pulmonares , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratas , Células A549 , Heces/microbiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Microbiota/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos
18.
Life Sci ; 352: 122859, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38925223

RESUMEN

Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.


Asunto(s)
Antineoplásicos , Proliferación Celular , Reposicionamiento de Medicamentos , Neoplasias Pulmonares , Ribavirina , Humanos , Reposicionamiento de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ribavirina/farmacología , Células A549 , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Biología Computacional/métodos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo
19.
Ageing Res Rev ; 99: 102357, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830548

RESUMEN

Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Relevancia Clínica
20.
EXCLI J ; 23: 570-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887390

RESUMEN

Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA