Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32003, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882302

RESUMEN

Mycobacterium tuberculosis (M. tb) is the causative agent of Tuberculosis, one of the deadliest infectious diseases. According to the WHO Report 2023, in 2022, approximately 10.6 million people got infected with TB, and 1.6 million died. It has multiple antibiotics for treatment, but the major drawback of anti-tuberculosis therapy (ATT) is, its prolonged treatment duration. The major contributors to the lengthy treatment period are mycobacterial persistence and drug tolerance. Persistent M. tb is phenotypically drug tolerant and metabolically slow down which makes it difficult to be eliminated during ATT. These persisting bacteria are a huge reservoir of impending disease, waiting to get reactivated upon the onset of an immune compromising state. Directly Observed Treatment Short-course, although effective against replicating bacteria; fails to eliminate the drug-tolerant persisters making TB still the second-highest killer globally. There are different mechanisms for the development of drug-tolerant mycobacterial populations being investigated. Recently, the role of biofilms in the survival and host-evasion mechanism of persisters has come to light. Therefore, it is crucial to understand the mechanism of adaptation, survival and attainment of drug tolerance by persisting M. tb-populations, in order to design better immune responses and therapeutics for the effective elimination of these bacteria by reducing the duration of treatment and also circumvent the generation of drug-resistance to achieve the goal of global eradication of TB. This review summarizes the drug-tolerance mechanism and biofilms' role in providing a niche to dormant-M.tb. We also discuss methods of targeting biofilms to achieve sterile eradication of the mycobacteria and prevent its reactivation by achieving adequate immune responses.

2.
Proc Natl Acad Sci U S A ; 120(34): e2302370120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590410

RESUMEN

Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-ß mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-ß receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-ß signaling in mammalian cells.


Asunto(s)
Parásitos , Animales , Ratones , Linfocitos T Reguladores , Transducción de Señal , Factor de Crecimiento Transformador beta , Factores de Transcripción Forkhead , Mamíferos
3.
Antioxid Redox Signal ; 39(7-9): 591-619, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470214

RESUMEN

Significance: Mitochondria are subcellular organelles performing essential metabolic functions contributing to cellular bioenergetics and regulation of cell growth or death. The basic mitochondrial function in fulfilling the need for cell growth and vitality is evidenced whereby cancer cells with depleted mitochondrial DNA (rho zero, p0 cells) no longer form tumors until newly recruited mitochondria are internalized into the rho zero cells. Herein lies the absolute dependency on mitochondria for tumor growth. Hence, mitochondria are key regulators of cell death (by apoptosis, necroptosis, or other forms of cell death) and are, therefore, important targets for anticancer therapy. Recent Advances: Mitochondrial plasticity regulating their state of fusion or fission is key to the chemoresistance properties of cancer cells by promoting pro-survival pathways, enabling the mitochondria to mitigate against the cellular stresses and extreme conditions within the tumor microenvironment caused by chemotherapy, hypoxia, or oxidative stress. Critical Issues: This review discusses many characteristics of mitochondria, the processes and pathways controlling the dynamic changes occurring in the morphology of mitochondria, the roles of reactive oxygen species, and their relationship with mitochondrial fission or fusion. It also examines the relationship of redox to mitophagy when mitochondria become compromised and its effect on cancer cell survival, stemness, and the changes accompanying malignant progression from primary tumors to metastatic disease. Future Directions: A challenging question that arises is whether the changes in mitochondrial dynamics and their regulation can provide opportunities for improving drug targeting during cancer treatment and enhancing survival outcomes. Antioxid. Redox Signal. 39, 591-619.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , ADN Mitocondrial/metabolismo , Oxidación-Reducción , Dinámicas Mitocondriales , Microambiente Tumoral
4.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-37204155

RESUMEN

Eukaryotic cell migration requires continuous supply of actin polymers at the leading edges to make and extend lamellipodia or pseudopodia. Linear and branched filamentous actin polymers fuel cell migration. Branching of actin polymers in the lamellipodia/pseudopodia is facilitated by the actin-related protein (Arp) 2/3 complex, whose function is essentially controlled by the Scar/WAVE complex. In cells, the Scar/WAVE complex remains inactive, and its activation is a highly regulated and complex process. In response to signalling cues, GTP-bound Rac1 associates with Scar/WAVE and causes activation of the complex. Rac1 is essential but not sufficient for the activation of the Scar/ WAVE complex, and it requires multiple regulators, such as protein interactors and modifications (phosphorylation, ubiquitylation, etc.). Although our understanding of the regulation of the Scar/WAVE complex has improved over the last decade, it remains enigmatic. In this review, we have provided an overview of actin polymerization and discussed the importance of various regulators of Scar/WAVE activation.


Asunto(s)
Actinas , Proteína de Unión al GTP rac1 , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Movimiento Celular/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
5.
Cell Mol Immunol ; 20(6): 600-612, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37173422

RESUMEN

Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.


Asunto(s)
Enfermedades Transmisibles , Células Madre Mesenquimatosas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Citocinas , Inmunomodulación , Células Madre Mesenquimatosas/fisiología
6.
Life Sci ; 321: 121535, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906255

RESUMEN

MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Procesamiento Proteico-Postraduccional , Diferenciación Celular
7.
Front Mol Biosci ; 9: 965921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106016

RESUMEN

Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation.

8.
Methods Mol Biol ; 2438: 467-482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147958

RESUMEN

Chemotaxis-directional cell movement steered by chemical gradients-involved in many biological processes including embryonic morphogenesis and immune cell function. Eukaryotic cells, in response to external gradients of attractants, use conserved mechanisms to achieve chemotaxis by regulating the actin cytoskeleton at their fronts and myosin II at their rears. Dictyostelium discoideum, an amoeba that is widely used to study chemotaxis, uses chemotaxis to move up gradients of folate to identify and locate its bacterial prey. Similarly, when starved, Dictyostelium cells synthesize and secrete cyclic AMP (cAMP) while simultaneously expressing cAMP receptors. This allows them to chemotax toward their neighbors and aggregate together. The chemotactic behavior of cells can be studied using several techniques. One such, under-agarose chemotaxis, is a robust, easy, and inexpensive assay that allows direct quantification of chemotactic parameters such as speed and directionality. With the use of high-resolution imaging, for example confocal microscopy, detailed examination of the distribution of actin and membrane proteins in migrating wild type and mutant cells can be performed. In this chapter, we describe simple and optimized methods for studying folate and cAMP chemotaxis in Dictyostelium cells under agarose.


Asunto(s)
Dictyostelium , Ensayos de Migración Celular , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/fisiología , Sefarosa
9.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34943993

RESUMEN

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


Asunto(s)
Dictyostelium/metabolismo , Espacio Extracelular/metabolismo , Proteínas Protozoarias/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Dictyostelium/efectos de los fármacos , Mutación/genética , Presión Osmótica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Protozoarias/genética , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Transducción de Señal/efectos de los fármacos
11.
PLoS Pathog ; 16(9): e1008887, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32956412

RESUMEN

Despite the availability of multiple antibiotics, tuberculosis (TB) remains a major health problem worldwide, with one third of the population latently infected and ~2 million deaths annually. The only available vaccine for TB, Bacillus Calmette Guérin (BCG), is ineffective against adult pulmonary TB. Therefore, alternate strategies that enhance vaccine efficacy are urgently needed. Vaccine efficacy and long-term immune memory are critically dependent on central memory T (TCM) cells, whereas effector memory T (TEM) cells are important for clearing acute infections. Recently, it has been shown that inhibition of the Kv1.3 K+ ion channel, which is predominantly expressed on TEM but not TCM cells, profoundly enhances TCM cell differentiation. We exploited this phenomenon to improve TCM:TEM cell ratios and protective immunity against Mycobacterium tuberculosis infection in response to BCG vaccination of mice. We demonstrate that luteolin, a plant-derived Kv1.3 K+ channel inhibitor, profoundly promotes TCM cells by selectively inhibiting TEM cells, and significantly enhances BCG vaccine efficacy. Thus, addition of luteolin to BCG vaccination may provide a sustainable means to improve vaccine efficacy by boosting host immunity via modulation of memory T cell differentiation.


Asunto(s)
Vacuna BCG/inmunología , Memoria Inmunológica/efectos de los fármacos , Canal de Potasio Kv1.3 , Luteolina/farmacología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Animales , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/inmunología , Ratones , Tuberculosis/prevención & control
12.
PLoS Biol ; 18(8): e3000774, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32745097

RESUMEN

The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.


Asunto(s)
Dictyostelium/genética , MAP Quinasa Quinasa Quinasa 3/genética , Proteínas Protozoarias/genética , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Animales , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular Tumoral , Quimiotaxis/genética , Dictyostelium/metabolismo , Dictyostelium/ultraestructura , Edición Génica/métodos , Regulación de la Expresión Génica , MAP Quinasa Quinasa Quinasa 3/metabolismo , Melanocitos/metabolismo , Melanocitos/ultraestructura , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Células 3T3 NIH , Fenotipo , Fosforilación , Ploidias , Proteínas Protozoarias/metabolismo , Seudópodos/genética , Seudópodos/ultraestructura , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
13.
Commun Integr Biol ; 14(1): 1-4, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33447346

RESUMEN

The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.

14.
Dev Biol ; 396(2): 256-68, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446527

RESUMEN

Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5' deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5' deiodinase in D. discoideum. dio3(-) had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3(-) was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3(-). Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell-cell adhesion. The dio3(-) slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell-cell adhesion and slug patterning. The phenotype of dio3(-) suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote.


Asunto(s)
Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Adhesión Celular/fisiología , Dictyostelium/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Humanos , Yoduro Peroxidasa/farmacología , Microscopía Fluorescente , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de AMP Cíclico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Transducción de Señal/efectos de los fármacos
15.
BMC Dev Biol ; 12: 26, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22928977

RESUMEN

BACKGROUND: The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. RESULTS: Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4) and adenyl cyclase-A (AcaA) levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk) and pspA (prespore) cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. CONCLUSION: Caffeine decreases adenyl cyclase-A (AcaA) levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4) levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells.


Asunto(s)
Cafeína/farmacología , Dictyostelium/citología , Inhibidores de Fosfodiesterasa 4/farmacología , 1-Metil-3-Isobutilxantina/farmacología , Transdiferenciación Celular , Factores Quimiotácticos/farmacología , Quimiotaxis , AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dictyostelium/efectos de los fármacos , Dictyostelium/fisiología , Dipéptidos/farmacología , Expresión Génica , Cinética , Lactamas/farmacología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...