Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Arch Med Res ; 55(6): 103037, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981342

RESUMEN

Human life and health have interacted reciprocally with the surrounding environment and animal fauna for ages. This relationship is evident in developing nations, where human life depends more on the animal population for food, transportation, clothing, draft power, and fuel sources, among others. This inseparable link is a potent source of public health issues, especially in outbreaks of zoonotic diseases transmitted from animals to humans. Zoonotic diseases are referred to as diseases that are naturally transmitted between vertebrate animals and humans. Among the globally emerging diseases in the last decade, 75% are of animal origin, most of which are life-threatening. Since most of them are caused by potent new pathogens capable of long-distance transmission, the impact is widespread and has serious public health and economic consequences. Various other factors also contribute to the transmission, spread, and outbreak of zoonotic diseases, among which industrialization-led globalization followed by ecological disruption and climate change play a critical role. In this regard, all the possible strategies, including advances in rapid and confirmatory disease diagnosis and surveillance/monitoring, immunization/vaccination, therapeutic approaches, appropriate prevention and control measures to be adapted, and awareness programs, need to be adopted collaboratively among different health sectors in medical, veterinary, and concerned departments to implement the necessary interventions for the effective restriction, minimization, and timely control of zoonotic threats. The present review focuses on the current scenario of zoonotic diseases and their counteracting approaches to safeguard their health impact on humans.


Asunto(s)
Zoonosis , Animales , Humanos , Zoonosis/prevención & control , Zoonosis/epidemiología , Zoonosis/diagnóstico , Zoonosis/transmisión , Salud Pública
2.
Pathogens ; 13(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921771

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) infection leads to chronic, persistent granulomatous enteritis, causing prolonged diarrhoea and emaciation. The disease is managed using medications such as antibiotics, live vaccines, mycobacteriophage therapies and other treatments; however, a notable proportion of affected animals do not show improvement with this approach. We hypothesise that immunoinhibitory receptors TIM-3 (T cell immunoglobulin mucin protein-3) and PD-1 (Programmed death receptor 1) may be upregulated on Peripheral blood mononuclear cells (PBMCs) of MAP-seropositive bovines, potentially contributing to immune exhaustion. Samples (blood and faeces) were collected from 32 diarrhoeic bovines suspected of MAP infection; eight apparently healthy buffaloes from the dairy farm at Hisar, Haryana and from 14 cows (suffering from chronic diarrhoea, weakness and emaciation) housed in stray cattle shed. MAP infection was estimated using indigenous ELISA (i-ELISA), faecal IS900 PCR, culture and acid-fast staining. TIM-3 and PD-1 gene expression on PBMCs were determined using qRT-PCR. TIM3 expression was relatively higher (~400-fold, 330-fold, 112-fold, 65-fold and 16-fold) in 5 chronically diarrhoeic PBMCs samples (MAP-seropositive), and higher PD-1 expression (around ~7-fold, 1.75-fold, 2.5-fold, 7.6-fold) was recorded in 4 diarrhoeic MAP-seropositive animals, compared to apparently healthy and other MAP-seronegative diarrhoeic animals. High co-expression of TIM-3 and PD-1 levels was also recorded in chronically diarrhoeic, emaciated stray cattle. Understanding immune responses in field conditions might aid in the therapeutic management of paratuberculosis.

3.
J Ethnopharmacol ; 333: 118482, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38908495

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Indian system of Traditional medicine, AYUSH (Ayurveda, Yoga, Unani, Siddha, and Homeopathy) has great potential with a History of Safe Use (HOSU) of thousands of medicinal plants included in pharmacopoeias. The multi-targeted approach of phytoconstituents present in different traditionally used medicinal plants makes them suitable candidates for research against various infective pathogens. MAP which is a dairy-borne pathogen is associated with the development of Johne's disease in ruminants and Crohn's disease like autoimmune disorders in human beings. There are no reliable treatment alternatives available against MAP, leaving surgical removal of intestines as the sole option. Hence, there exists an urgent need to search for leads against such infection. AIM OF THE STUDY: The present review has been conducted to find out the ethnopharmacological evidence about the potential of phytoconstituents against Mycobacterium avium subspecies paratuberculosis (MAP), along with the proposal of a potential phyto-MAP mechanism for the very first time taking anti-inflammatory, immunomodulatory, and anti-microbial traditional claims into consideration. MATERIALS AND METHODS: We have analyzed and reviewed different volumes of the two main traditional scriptures of India i.e. Ayurvedic Pharmacopoeia of India (API) and Unani Pharmacopoeia of India (UPI), respectively-for identification of potential anti-MAP plants based on their claims for related disorders. These plants were further investigated systematically for their scientific publications of the last 20 years (2002-2022) available through electronic databases including Google Scholar, Pubmed, and Scopus. The studies conducted in vitro, cell lines, and in vivo levels were taken into consideration along with the associated mechanisms of phytoconstituents. RESULTS: A total of 70 potential medicinal plants have been identified. Based on the ethnopharmacology, a potential phyto-paratuberculosis (Phyto-paraTB) mechanism has been proposed and out of 70, seven potential anti-MAP plants have been identified to have a great future as anti-MAP. CONCLUSION: A novel and scientifically viable plan has been proposed for addressing anti-MAP plants for stimulating research against MAP and related disorders using mass-trusted AYUSH medicine, which can be used as an alternative remedy in resistance cases otherwise can be advocated as an adjuvant with modern treatments for better management of the disease.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Plantas Medicinales , Mycobacterium avium subsp. paratuberculosis/efectos de los fármacos , Humanos , Animales , Descubrimiento de Drogas/métodos , Etnofarmacología , Paratuberculosis/tratamiento farmacológico , Paratuberculosis/microbiología , Fitoterapia , Medicina Ayurvédica , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
4.
Heliyon ; 10(3): e25254, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327455

RESUMEN

Leprosy is a disease with spectral clinical manifestations along with two types of reactions, type 1 reaction (T1R) and type 2 reaction (T2R). T1R especially occurs because of the defensive upgradation of cell-mediated immunity (CMI) to M. leprae antigens. T1R is the main cause of disability in leprosy. The role of conventional adaptive T cells has been well studied to understand T1R. A comprehensive understanding of the role of unconventional T cells in the manifestation of inflammation during T1R is crucial and has not been studied. In our study, we found significantly higher plasma levels of TNFα, IL1ß, IL17, and IP10 in T1R when compared to non-reaction (NR). Gene expression for cytokines in blood circulation by qPCR showed significantly higher expression of IFNγ, IP10, TNFα, IL6, IL17A and chemokines CCL3, CCR1, CCR5, and CXCR3 in T1R as compared to NR. Frequencies of NKT-like cells (48.7 %) and NK cells (22.3 %) were found significantly higher in T1R in comparison to NR (36.9 %, 18.3 %, respectively) (p = 0.0001). Significantly lower levels of γδT cells (3.32 %) were observed in T1R in comparison to NR (5.16 %). The present study has provided evidence for the first time on the role of plausible unconventional T cells in the immunopathogenesis of T1R in leprosy.

5.
BMC Immunol ; 24(1): 49, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036985

RESUMEN

BACKGROUND: Tumor necrosis factor (TNF) is known to promote T cell migration and increase the expression of vascular endothelial growth factor (VEGF) and chemokines. The administration of Xpro-1595, a dominant-negative TNF (DN-TNF) engineered to selectively inactivate soluble TNF (solTNF), has been extensively studied and proven effective in reducing TNF production without suppressing innate immunity during infection. The literature also supports the involvement of glutamic acid-leucine-arginine (ELR+) chemokines and VEGF in angiogenesis and the spread of infections. MATERIALS AND METHODS: In this study, we administered Xpro-1595 to guinea pigs to selectively inhibit solTNF, aiming to assess its impact on Mycobacterium tuberculosis (M.tb) dissemination, bacterial growth attenuation, and immunological responses. We conducted immunohistochemical analyses, immunological assays, and colony enumeration to comprehensively study the effects of Xpro-1595 by comparing with anti-TB drugs treated M.tb infected guinea pigs. Throughout the infection and treatment period, we measured the levels of Interleukin-12 subunit alpha (IL-12), Interferon-gamma (IFN-γ), TNF, Tumor growth factor (TGF), and T lymphocytes using ELISA. RESULTS: Our findings revealed a reduction in M.tb dissemination and inflammation without compromising the immune response during Xpro-1595 treatment. Notably, Xpro-1595 therapy effectively regulated the expression of VEGFA and ELR + chemokines, which emerged as key factors contributing to infection dissemination. Furthermore, this treatment influenced the migration of CD4 T cells in the early stages of infection, subsequently leading to a reduced T cell response and controlled proinflammatory signalling, thus mitigating inflammation. CONCLUSION: Our study underscores the pivotal role of solTNF in the dissemination of M.tb to other organs. This preliminary investigation sheds light on the involvement of solTNF in the mechanisms underlying M.tb dissemination, although further in-depth research is warranted to fully elucidate its role in this process.


Asunto(s)
Productos Biológicos , Mycobacterium tuberculosis , Animales , Cobayas , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular , Quimiocinas , Inflamación
6.
BMC Vet Res ; 19(1): 157, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710242

RESUMEN

BACKGROUND: Detection of an appropriate antigen with high immunogenicity can be a big step in the production of an effective vaccine for control of Johne's disease (JD). The aim of this study was to evaluate the efficacy of Mce-truncated protein as a subunit vaccine candidate for the control of JD in experimentally challenged goats. MATERIALS AND METHODS: Six healthy goat kids were immunized with Mce-truncated protein, and two goats were kept as controls. All kids were twice challenged orally with live Mycobacterium avium subspecies paratuberculosis(MAP) strain and half the goats from both the categories were sacrificed at 7 and 10 months after start of challenge study. Culture of MAP was performed from all the necropsied tissues to determine the true JD infection status. RESULTS: Mce-truncated protein only reacted with pooled vaccinated goat sera in western-blot. A significant increase in humoral immune response against Mce protein was also observed in vaccinated goats. Compared to the control group, vaccinated goats gained higher body weights and none of them shed MAP or showed histopatological lesions or colonization of MAP in their necropsy tissues. CONCLUSIONS: The new Mce protein based vaccine provided significant immunity in goats as they could meet the challenge with live MAP bacilli. Although the vaccine used in this study showed the high potential as a new effective vaccine for the control of JD, further validation study is still required to successfully implement the vaccine for JD control program.


Asunto(s)
Enfermedades de las Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Cabras , Vacunas de Subunidad , Inmunidad Humoral , Paratuberculosis/prevención & control , Enfermedades de las Cabras/prevención & control
7.
Indian J Med Res ; 158(1): 40-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602585

RESUMEN

Background & objectives: As CD4+ and CD8+ T lymphocyte numbers decline, the conventional, localized forms of tuberculosis shift to the atypical, disseminated forms. Variations in lymphocyte and immune cell expression levels affect how tuberculosis manifests in disseminated forms. Understanding the relationship between lymphocyte counts (CD4+ and CD8+) and pro-inflammatory cytokines such as tumour necrosis factor-alpha, interleukin-12 and interferon, we may therefore be able to shed light on how infections spread and suggest potential biomarkers for these immune factors. Methods: In this study, 15 guinea pigs were infected with Mycobacterium tuberculosis (M.tb) H37Rv strain and grouped into three groups of five each for further investigation. Serum samples and bronchoalveolar lavage (BAL) fluid were examined for the expression of pro-inflammatory cytokines and T-cell subsets in guinea pigs infected with pulmonary tuberculosis and disseminated tuberculosis. Results: We found that M.tb escapes macrophages due to pro-inflammatory cytokine dysregulation. Despite the protective immunity created by T-cells and cytokines, M.tb bacilli may spread to other organs due to inflammation induced by these immune components. A high number of T-cells and stimulated cytokine production are involved in triggering inflammation after necrotic tissue develops and tuberculosis spreads. Interpretation & conclusions: Our findings imply that increased bacilli in the spleen at the 8th wk of infection may be caused by the overexpression of CD4+ T-cell lymphocyte subsets and cytokines that generated inflammation during the 4th wk of infection. This is a pilot study with a small sample size and less assertive inference. Larger studies would be helpful to validate the results of the present investigation.


Asunto(s)
Citocinas , Mycobacterium tuberculosis , Animales , Cobayas , Linfocitos T , Proyectos Piloto , Inflamación
8.
Molecules ; 28(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110723

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic, contagious, and typically life-threatening enteric disease of ruminants caused by a bacterium of the genus Mycobacterium, but it can also affect non-ruminant animals. MAP transmission occurs through the fecal-oral pathway in neonates and young animals. After infection, animals generate IL-4, IL-5, and IL-10, resulting in a Th2 response. Early detection of the disease is necessary to avoid its spread. Many detection methods, viz., staining, culture, and molecular methods, are available, and numerous vaccines and anti-tuberculosis drugs are used to control the disease. However, the prolonged use of anti-tuberculosis drugs leads to the development of resistance. Whereas vaccines hamper the differentiation between infected and vaccinated animals in an endemic herd. This leads to the identification of plant-based bioactive compounds to treat the disease. Bioactive compounds of Ocimum sanctum and Solanum xanthocarpum have been evaluated for their anti-MAP activity. Based on the MIC50 values, Ursolic acid (12 µg/mL) and Solasodine (60 µg/mL) were found to be suitable for anti-MAP activity.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Solanum , Animales , Bovinos , Paratuberculosis/diagnóstico , Ocimum sanctum , Rumiantes
9.
Curr Drug Discov Technol ; 20(4): e100323214551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896903

RESUMEN

BACKGROUND: Mycobacterium avium sp. paratuberculosis (MAP) is a pathogen, which causes paratuberculosis in animals; it has also been found to be associated with a number of autoimmune disorders in humans. The emergence of drug resistance has also been found in this bacillus during disease management. OBJECTIVE: The present study's focus was to identify potential therapeutic targets for the therapeutic management of Mycobacterium avium sp. paratuberculosis infection by in silico analysis. METHODS: Differentially-expressed genes (DEGs) can be good drug targets, which can be identified from microarray studies. We used gene expression profile GSE43645 to identify differentiallyexpressed genes. An integrated network of upregulated DEGs was constructed with the STRING database and the constructed network was analyzed and visualized by Cytoscape. Clusters in the proteinprotein interaction (PPI) network were identified by the Cytoscape app ClusterViz. MAP proteins predicted in clusters were analyzed for their non-homology with the human proteins, and homologous proteins were excluded. Essential proteins and cellular localization analysis and the physicochemical characteristics prediction were also done. Finally, the druggability of the target proteins and drugs that can block the targets was predicted using the DrugBank database and confirmed by molecular docking. Structural prediction and verification of drug target proteins were also carried out. RESULTS: Two drug targets, MAP_1210 (inhA) and MAP_3961 (aceA), encoding enoyl acyl carrier protein reductase and isocitrate lyase enzymes, respectively, were finally predicted as potential drug targets. CONCLUSION: Both of these proteins have been predicted as drug targets in other mycobacterial species also, supporting our results. However, further experiments are required to confirm these results.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Humanos , Paratuberculosis/tratamiento farmacológico , Paratuberculosis/microbiología , Mycobacterium avium/genética , Mycobacterium avium/metabolismo , Mycobacterium avium subsp. paratuberculosis/genética , Simulación del Acoplamiento Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
Microbiol Spectr ; : e0319722, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719189

RESUMEN

The majority of preclinical research has shown that Mycobacterium tuberculosis can modify host lipids in various ways. To boost its intramacrophage survival, M. tuberculosis causes host lipids to build up, resulting in the development of lipid-laden foam cells. M. tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration. Here, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on the bacterial burden by increasing the drug concentration at the infection site. We looked into how atorvastatin could be used in conjunction with first-line drugs to promote drug permeation. In this study, we detected an accumulation of drugs at the peripheral sites of the lungs and impaired drug distribution to the diseased sites. The efficacy of antituberculosis drugs, with atorvastatin as an adjunct, on the viability of M. tuberculosis cells was demonstrated. A nontoxic statin dosage established phenotypic and normal granuloma vasculature and showed an additive effect with rifampicin and isoniazid. Our data show that statins help to reduce the tuberculosis bacterial burden. Our findings reveal that the bacterial load is connected with impaired drug permeability resulting from lipid accumulation in the bacterial cell wall. Statin therapy combined with antituberculosis medications have the potential to improve treatment in tuberculosis patients. IMPORTANCE Mycobacterium tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. M. tuberculosis limits phagosomal maturation and activation without engaging in phagocytosis. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in the vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration, which can be increased through a reduction in cholesterol and vascularity. Herein, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on bacterial burden through increasing the drug concentration at the infection site. Our main research goal is to diminish mycobacterial dissemination and attenuate bacterial growth by increasing drug permeability.

11.
Front Microbiol ; 14: 1305974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38481606

RESUMEN

Objectives: The objective of this study is to analyze the association between TLR2 deletion (-196 to -174) and TLR1 743 A > G gene polymorphism with drug resistant tuberculosis (PTB, MDR-TB, and XDR-TB) in a population from Agra, Uttar Pradesh. Methods: The present case-control study included 101 pulmonary TB patients, 104 multidrug-resistant TB patients, 48 extremely drug-resistant TB patients, and 130 healthy and unrelated controls residing in the same locality. The genotyping method for TLR2 deletion (-196 to -174) was carried out by allele-specific polymerase chain reaction (PCR), and TLR1 743 A > G gene polymorphism was performed by hybridization probe chemistry in Roche Real-Time PCR. Genotype and allele frequencies were analyzed by the chi-square test. Cytokine levels were measured by ELISA and compared using Mann-Whitney and Kruskal-Wallis tests. Results: The frequency of heterozygous (Ins/del) genotypes for TLR2 (-196 to -174) polymorphism was predominant in XDR-TB patients (0.57), whereas heterozygous A/G genotype for TLR1 743 A > G single nucleotide polymorphism (SNP) was predominant in healthy controls (0.57) for TLR1 743 A > G gene polymorphism. The heterozygous genotype of TLR2 deletion polymorphism was found to be significantly higher in XDR-TB (p = 0.0001). TLR1 743 A > G SNP, AG genotypes were found to be significantly associated with healthy controls than PTB (p = 0.047). The level of serum cytokines (IL-6, TNF-α, and IFN-γ) was also found to be significantly different among TB patients and healthy controls. Conclusion: The findings suggested that in the present population, the heterozygous (Ins/Del) genotype and deletion allele of TLR2 deletion (-196 to -174) polymorphism are associated with the risk for the development of drug-resistant TB. Furthermore, for TLR1 743 A > G gene polymorphism, A/G genotype, and G allele are found associated with healthy controls, suggesting the protective role against TB.

12.
Front Microbiol ; 13: 1075053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36560940

RESUMEN

Introduction: Immunological reactions are frequent complications that may occur either before, during, or after treatment and affect 30-50% of leprosy patients. The presence of autoantibodies like rheumatoid factor, antinuclear factor, and antibodies to host collagen, keratin, actin, myosin, endothelial cells, and myelin basic protein (MBP) has been earlier reported in leprosy patients. The purpose of this study was to identify cross-reactive proteins in clinical samples such as saliva and slit skin scrapings (SSS) of leprosy patients which could be utilised as prognostic biomarkers for Type 1 Reaction (T1R) in leprosy. Method: A total of 10 leprosy patients in T1R and 5 healthy volunteers were recruited. The protein was extracted from their SSS and saliva samples, thereafter, isoelectric focusing (IEF) and two-dimensional PAGE were performed to analyse the proteins. Furthermore, the cross-reactivity was identified by western blotting host proteins in gel against purified IgG from Mycobacterium leprae soluble antigen (MLSA)- hyperimmunized rabbit sera, thereafter, cross-reactive proteins were identified by MS/MS. The cross-reactive host proteins were analysed for homologous bacterial proteins and B cell epitopes (BCEs) were predicted by using bioinformatic tools. Results: A total of five spots of salivary proteins namely S100-A9, 35.3 kDa, and 41.5 kDa proteins, Serpin peptidase inhibitor (clade A), Cystatin SA-III, and four spots of SSS namely 41.4 kDa protein, Alpha-1 antitrypsin, vimentin, and keratin 1, were identified as cross-reactive. Further, a total of 22 BCEs of cross-reactive host proteins were predicted and visualised. Discussion: This data provides strong evidence of cross-reactivity/molecular mimicry between host and pathogen in leprosy patients with reaction. These BCEs of cross-reactive proteins could be further studied to predict reactions and may be utilised as an early diagnostic biomarker for T1R in leprosy.

13.
Indian J Med Res ; 156(1): 21-30, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36510895

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis is a leading cause of human deaths due to any infectious disease worldwide. However, infection of Mycobacterium bovis, primarily an animal pathogen, also leads to the development of 'human tuberculosis'. Infected animals have been considered the major source of M. bovis infection and humans get exposed to M. bovis through close contact with infected animals or consumption of contaminated milk, unpasteurized dairy products and improperly cooked contaminated meat. The information on the global distribution of bovine TB (bTB) is limited, but the disease has been reported from all the livestock-producing middle- and low-income countries of the world. In recent years, there is a renewed interest for the control of bTB to minimize human infection worldwide. In India, while the sporadic presence of M. bovis has been reported in domestic animals, animal-derived food products and human beings from different geographical regions of the country, the information on the national prevalence of bTB and transmission dynamics of zoonotic TB is, however, not available. The present article reviewed published information on the status of M. bovis-induced zoonotic TB to highlight the key challenges and opportunities for intervention to minimize the risk of M. bovis infection in humans and secure optimum animal productivity in India.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Tuberculosis , Bovinos , Animales , Humanos , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/prevención & control , Tuberculosis/epidemiología , Tuberculosis/microbiología , Leche/microbiología
14.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36355539

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP), being a dairy-borne pathogen, resistant of pasteurization and other sterilization techniques, is a major cause for development of inflammatory bowel disorders such as Johne's disease (JD) in dairy animals and Crohn's Disease (CD) in humans, for which no therapy is available to date. In the absence of effective therapy or a vaccine, management of CD has been accomplished by removal of the affected intestines. However, usually, even after removal of 2/3 of the intestine, CD reoccurs. Hence, there exists a need to develop an alternative therapy for such infection. The potential of herbals remains unexplored against MAP and related infections. Therefore, the conducted study is a novel initiative for the evaluation of anti-mycobacterial activity of bioactive extracts of Solanum xanthocarpum Schrad. & Wendl. against MAP infection. The said plant was authenticated according to the Ayurvedic Pharmacopoeia of India. Qualitative and quantitative evaluation of the extracts were done using chromatographic and spectroscopic techniques. Preliminary in vitro pharmacological assessments revealed the immunomodulatory and anti-inflammatory potential of the extracts. REMA assay was conducted to determine their anti-MAP activity along with determination of the best active extract. The hydro-alcoholic extract showed the best inhibition of MAP, providing a potential ray of hope against this emerging major pathogen of animals, and associated with Crohn's disease and other autoimmune disorders in human beings.

15.
Tuberculosis (Edinb) ; 135: 102224, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35763913

RESUMEN

Pathogenic mycobacteria induce and accelerate blood vessel formation driven by extensive inflammation during granuloma formation, which is a central feature of mycobacterial pathogenesis. Tumor necrosis factor-alpha (TNF-α) enhances the expression of vascular endothelial growth factor (VEGF) and glutamic acid-leucine-arginine (ELR+) chemokines, which are potent inducers of vascularization. Most of the reported research work contends that VEGF growth factor induces neovascularization in human tuberculosis (TB) patients, but the evidence is inconclusive. Considerable ambiguity exists concerning the factors responsible for miliary tuberculosis. To identify such factors, we proposed an alternative explanation that could be found in miliary tuberculosis (MTB) cases. We performed a comparative analysis of angiogenic factors TNF-α, VEGF, and angiogenic ELR+ CXC and CC chemokine ligands in extrapulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB) patients. To observe the relationship of these factors with the severity of bacterial burden, guinea pigs were infected with Mycobacterium tuberculosis (M.tb) and levels of the angiogenic factors were examined at different time intervals. Expression of these factors also exhibited a significant positive correlation with bacterial burden in other organs like the spleen, liver, and lymph nodes. We demonstrated statistical data on bacterial burden at different time points following the dissemination of infection in guinea pigs. In this study, we observed that there was a stimulated increase in the expression of ELR+ chemokines and VEGF in EPTB patients as compared to PTB patients. Following increased dissemination, the host immune response clears bacteria from the lungs during disease progression in guinea pigs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Miliar , Tuberculosis Pulmonar , Proteínas Adaptadoras Transductoras de Señales , Animales , Moléculas de Adhesión Celular , Quimiocinas , Guanilato-Quinasas , Cobayas , Humanos , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular
17.
BMC Vet Res ; 18(1): 47, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042530

RESUMEN

BACKGROUND: This study aimed to screen the sera of goats and sheep from flocks suspected of Mycobacterium avium subsp. paratuberculosis (MAP) infection by a newly standardized Mce-truncated ELISA (Mt-ELISA) kit for the detection of antibodies against MAP. Four diagnostic applied tests were evaluated including Indigenous plate-ELISA (IP-ELISA), Mt-ELISA, fecal Polymerase Chain Reaction (f-PCR) and fecal culture (FC). MATERIALS AND METHODS: Assuming the absence of a gold standard, latent-class models in a Bayesian framework were used to estimate the diagnostic accuracy of the four tests for MAP. RESULTS: Mt-ELISA had higher Sensitivity (Se) in sheep (posterior median: 0.68 (95% Probability Interval (PI): 0.43-0.95), while IP-ELISA recorded the highest Se in goats as 0.83 (95% PI, 0.61-0.97). The f-PCR Se estimate slightly differed between species [sheep 0.36 (0.19-0.58), goats 0.19 (0.08-0.35)], while the Se of FC was similar between species [sheep 0.29 (0.15-0.51), goats 0.27 (0.13-0.45)]. The specificity estimates for all tests were high, close to unity, and similar between species. CONCLUSION: Overall, the results showed that the Mt-ELISA method can be used for MAP detection in small ruminants' flocks.


Asunto(s)
Enfermedades de las Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Enfermedades de las Ovejas , Animales , Teorema de Bayes , Ensayo de Inmunoadsorción Enzimática/veterinaria , Heces , Enfermedades de las Cabras/diagnóstico , Cabras , Paratuberculosis/diagnóstico , Sensibilidad y Especificidad , Ovinos , Enfermedades de las Ovejas/diagnóstico
18.
Anim Biotechnol ; 33(4): 664-671, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32985930

RESUMEN

This study aimed to explore the association of single nucleotide polymorphisms (SNPs) in CD209 gene with the occurrence of bovine paratuberculosis (PTB) disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) in Indian cattle. A total of 213 animals were preliminarily selected on the basis of physical body condition score, which was then screened by a panel of diagnostic tests viz. Johnin, ELISA, fecal microscopy, and fecal culture, for the establishment of a case-control resource population. A total of four SNPs viz. rs208222804, rs211654540, rs208814257, and rs210748127 in CD209 gene were genotyped by PCR-RFLP. All SNPs, except rs210748127, were polymorphic in our population. Genotypic-phenotypic associations were assessed by the PROCLOGISTIC procedure of SAS 9.3. The SNP rs208814257 yielded three genotypes viz. CC, CG, and GG, which were significantly (p < 0.05) different in case as compared to the control population. The odds of CC and CG in comparison to GG genotype were 1.21 and 0.40, respectively. The CG genotype was significantly higher in control population, indicating that this genotype may provide resistance against PTB in our resource population. Upon validation in an independent, larger test population and following biological characterization, SNP rs208814257 can be incorporated in marker panel for selection of animals with greater resistance to MAP infection.


Asunto(s)
Enfermedades de los Bovinos , Moléculas de Adhesión Celular , Lectinas Tipo C , Paratuberculosis , Receptores de Superficie Celular , Animales , Estudios de Casos y Controles , Bovinos/genética , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/microbiología , Moléculas de Adhesión Celular/genética , Predisposición Genética a la Enfermedad , Lectinas Tipo C/genética , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/epidemiología , Paratuberculosis/genética , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética
19.
Molecules ; 28(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36615467

RESUMEN

Mycobacterium avium subspecies paratuberculosis (MAP) infection in domestic livestock causes persistent diarrhea, weight loss, and death and is also a potential cause of Crohn's disease (CD) in humans; notably, treatments against MAP are insufficient, costly, and can cause adverse reactions. Hence, plant-derived bioactive constituents have been taken into consideration in this regard. Herein, we present the results of two bioactive constituents (Solasodine and Ursolic acid) that were evaluated for their safety and efficacy against MAP protein (Dephospho-Coenzyme A kinase (DPCK) by utilizing in vitro assays and different tools of in silico biology. The ADME/t-test, the drug-likeness property test, pharmacophore modelling, and PASS prediction have proven that both the constituents have better binding capacities than the available antibiotic drugs used to target protein inhibition pathways. Through our observations, it can be inferred that these two phytochemicals can be adequately used to treat paratuberculosis, thereby combating inflammatory bowel disorders (IBD) of an autoimmune nature.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Humanos , Paratuberculosis/tratamiento farmacológico , Paratuberculosis/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Ácido Ursólico
20.
Sci Rep ; 11(1): 24431, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952925

RESUMEN

Several Mycobacterial infections including leprosy and tuberculosis are known to evoke autoimmune responses by modulating homeostatic mechanism of the host. Presence of autoantibodies like, rheumatoid factor, anti-nuclear factor and antibodies to host, collagen, keratin, myelin basic protein (MBP) and myosin, have been earlier reported in leprosy patients. In the present study, we detected the role of mimicking epitopes between Mycobacterium leprae and host components in the induction of autoimmune response in leprosy. Based on our previous findings, we predicted and synthesized a total of 15 mimicking linear B cell epitopes (BCE) and 9 mimicking linear T cell epitopes (TCE) of keratin and MBP. Humoral and cell-mediated immune responses against these epitopes were investigated in Non-reaction (NR), Type 1 reaction (T1R) leprosy patients, and healthy controls. We observed significantly higher levels of antibodies against 8 BCE in T1R in comparison to NR leprosy patients. Further, we also found 5 TCE significantly associated with lymphocyte proliferation in the T1R group. Our results indicated that these epitopes play a key role in the induction of autoimmune response in leprosy and are also strongly associated with the inflammatory episodes of T1R. Conclusively, these molecules may be employed as a biomarker to predict the inflammatory episodes of T1R.


Asunto(s)
Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Lepra , Mycobacterium leprae/inmunología , Adulto , Antígenos Bacterianos/inmunología , Biomarcadores/metabolismo , Femenino , Humanos , Lepra/inmunología , Lepra/microbiología , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA