Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clean Eng Technol ; 4: 100218, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34322678

RESUMEN

On the eve of the outbreak of the COVID-19 pandemic, there is a tremendous increase in the production of facemasks across the world. The primary raw materials for the manufacturing of the facemasks are non-biodegradable synthetic polymers derived from petrochemicals. Disposal of these synthetic facemasks increases waste-load in the environment causing severe ecological issues for flora and fauna. The synthesis processes of the polymers from the petrochemical by-products were also not eco-friendly, which releases huge greenhouse and harmful gases. Therefore, many research organizations and entrepreneurs realize the need for biodegradable facemasks to render similar performance as the existing non-biodegradable masks. The conventional textile fabrics made of natural fibers like cotton, flax, hemp, etc., can also be used to prepare facemasks with multiple layers in use for general protection. Such natural textile masks can be made anti-microbial by applying various herbal anti-microbial extracts like turmeric, neem, basil, aloe vera, etc. As porosity is the exclusive feature of the masks for arresting tiny viruses, the filter of the masks should have a pore size in the nanometre scale, and that can be achieved in nanomembrane manufactured by electrospinning technology. This article reviews the various scopes of electrospinning technology for the preparation of nanomembrane biomasks. Besides protecting us from the virus, the biomasks can be useful for skin healing, skincare, auto-fragrance, and organized cooling which are also discussed in this review article.

2.
Acta Biomater ; 8(9): 3313-25, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22641105

RESUMEN

A novel design of silk-based scaffold is developed using a custom-made winding machine, with fiber alignment resembling the anatomical criss-cross lamellar fibrous orientation features of the annulus fibrosus of the intervertebral disc. Crosslinking of silk fibroin fibers with chondroitin sulphate (CS) was introduced to impart superior biological functionality. The scaffolds, with or without CS, instructed alignment of expanded human chondrocytes and of the deposited extracellular matrix while supporting their chondrogenic redifferentiation. The presence of CS crosslinking could not induce statistically significant changes in the measured collagen or glycosaminoglycan content, but resulted in an increased construct stiffness. By offering the combined effect of cell/matrix alignment and chondrogenic support, the silk fibroin scaffolds developed with precise fiber orientation in lamellar form represent a suitable substrate for tissue engineering of the annulus fibrosus part of the intervertebral disc.


Asunto(s)
Cartílago/química , Seda , Ingeniería de Tejidos , Células Cultivadas , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA