Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630073

RESUMEN

Cellular response to mechanical stimuli is a crucial factor for maintaining cell homeostasis. The interaction between the extracellular matrix and mechanical stress plays a significant role in organizing the cytoskeleton and aligning cells. Tools that apply mechanical forces to cells and tissues, as well as those capable of measuring the mechanical properties of biological cells, have greatly contributed to our understanding of fundamental mechanobiology. These tools have been extensively employed to unveil the substantial influence of mechanical cues on the development and progression of various diseases. In this report, we present an economical and high-performance uniaxial cell stretching device. This paper reports the detailed operation concept of the device, experimental design, and characterization. The device was tested with MDA-MB-231 breast cancer cells. The experimental results agree well with previously documented morphological changes resulting from stretching forces on cancer cells. Remarkably, our new device demonstrates comparable cellular changes within 30 min compared with the previous 2 h stretching duration. This third-generation device significantly improved the stretching capabilities compared with its previous counterparts, resulting in a remarkable reduction in stretching time and a substantial increase in overall efficiency. Moreover, the device design incorporates an open-source software interface, facilitating convenient parameter adjustments such as strain, stretching speed, frequency, and duration. Its versatility enables seamless integration with various optical microscopes, thereby yielding novel insights into the realm of mechanobiology.

2.
Small ; : e2303435, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37292037

RESUMEN

Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.

3.
Lab Chip ; 22(8): 1508-1518, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35344578

RESUMEN

A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.


Asunto(s)
Carbonato de Calcio
4.
Micromachines (Basel) ; 12(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34442532

RESUMEN

The upregulated expression of tyrosine kinase AXL has been reported in several hematologic and solid human tumors, including gastric, breast, colorectal, prostate and ovarian cancers. Thus, AXL can potentially serve as a diagnostic and prognostic biomarker for various cancers. This paper reports the first ever loop-mediated isothermal amplification (LAMP) in a core-shell bead assay for the detection of AXL gene overexpression. We demonstrated simple instrumentation toward a point-of-care device to perform LAMP. This paper also reports the first ever use of core-shell beads as a microreactor to perform LAMP as an attempt to promote environmentally-friendly laboratory practices.

5.
Lab Chip ; 21(7): 1418, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33877236

RESUMEN

Correction for 'Liquid marble-based digital microfluidics - fundamentals and applications' by Chin Hong Ooi et al., Lab Chip, 2021, DOI: .

6.
Soft Matter ; 17(15): 4069-4076, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725064

RESUMEN

A liquid marble (LM) is a droplet coated with microparticles that isolate the liquid interior from its surroundings, making it perfectly non-wetting. This attractive feature allows the LM to perform useful tasks such as coalescence, targeted delivery, and controlled release. The non-wetting characteristic also allows the LM to float on a carrier liquid. The growing number of applications in digital microfluidics requires further insights into the fundamental properties of a LM such as its effective surface tension. Although the coating provides the LM with various desirable characteristics, its random construction presents a major obstacle to accurate optical analysis. This paper presents a novel method to measure the effective surface tension of a floating LM using X-ray imaging and curve fitting procedures. X-ray imaging reveals the true LM liquid-air interface hidden by the coating particles. Analysis of this interface showed that the effective surface tension of a LM is not significantly different from that of its liquid content. This indicates that the particle coating might not have significantly altered the behaviour of the liquid interface. We also found that our method is sensitive enough to detect the variations across individual LMs.

7.
Lab Chip ; 21(7): 1199-1216, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33656019

RESUMEN

Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.

8.
Chemphyschem ; 22(1): 99-105, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33164308

RESUMEN

Liquid marbles are a promising microreactor platform that recently attracts significant research interest owing to their ability to accommodate a wide range of micro reactions. However, the use of destructive and ex-situ methods to monitor reactions impairs the potential of liquid-marble-based microreactors. This paper proposes a non-destructive, in situ, and cost-effective digital-imaging-based colourimetric monitoring method for transparent liquid marbles, using the enzymatic hydrolysis of starch as an illustrative example. The colourimetric reaction between starch and iodine produces a complex that exhibits a dark blue colour. We found that the absorbance of red channel of digital images showed a linear relationship with starch concentration with high sensitivity and repeatability. This digital-imaging-based colourimetric method was used to study the hydrolysis of starch by α-amylase. The results show high accuracy and applicability of first-order kinetics for this reaction. The demonstration of digital-imaging-based colourimetry indicates the potential of liquid marble-based microreactors.


Asunto(s)
Carbonato de Calcio/metabolismo , Colorimetría , alfa-Amilasas/metabolismo , Carbonato de Calcio/química , Hidrólisis , Almidón/química , Almidón/metabolismo
9.
Langmuir ; 35(13): 4566-4576, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30829489

RESUMEN

Extensive research is being devoted to both the fundamental and applied aspects of liquid marbles (LMs). However, influence of the surface tension of the liquid substrate on the stability of the LMs and LM-mediated capillary interaction remains unexplored. In this work, we unveil the role of the surface tension of the liquid substrate on the collapse of multilayered LMs and apply this knowledge for realizing a dense planar assembly of microparticles triggered by LM-mediated capillary interactions. Experiments and analysis show that the required surface tension for the collapse is dependent on the volume of the LMs. The larger LMs are less stable, and thus collapse at a higher surface tension than that required for smaller LMs. The results are explained on the basis of the balance between surface tension forces acting on the LM ( Fs) and its weight ( Fw). Force analysis reveals that the collapse of the LM on the liquid substrate occurs when the surface tension force approaches to its weight, that is, when Fs ≈ Fw. This has been verified for LMs having volume in the range 6-10 µL. The experiments with different surfactants (an anionic and a cationic) lead to similar results which indicate that the collapse condition of the LMs is mainly dependent on their weight and the surface tension of the liquid substrate. Further, we demonstrate the LM-mediated assembly of particles at the liquid surface, and interestingly, the LM can be collapsed once the assembly is completed, leading to a denser well-packed assembled structure. We believe that the presented results could provide new insights in the fields of microfluidics, particle patterning, and assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...