Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Epilepsia ; 64(2): 443-455, 2023 02.
Article En | MEDLINE | ID: mdl-36318112

OBJECTIVE: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS: We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE: This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.


Epilepsy , Neurodevelopmental Disorders , Humans , Epilepsy/genetics , Mutation/genetics , Seizures/genetics , Kv1.6 Potassium Channel/genetics
4.
Lancet Neurol ; 15(3): 270-8, 2016 Mar.
Article En | MEDLINE | ID: mdl-26724101

BACKGROUND: Almost a third of patients with epilepsy have a treatment-resistant form, which is associated with severe morbidity and increased mortality. Cannabis-based treatments for epilepsy have generated much interest, but scientific data are scarce. We aimed to establish whether addition of cannabidiol to existing anti-epileptic regimens would be safe, tolerated, and efficacious in children and young adults with treatment-resistant epilepsy. METHODS: In this open-label trial, patients (aged 1-30 years) with severe, intractable, childhood-onset, treatment-resistant epilepsy, who were receiving stable doses of antiepileptic drugs before study entry, were enrolled in an expanded-access programme at 11 epilepsy centres across the USA. Patients were given oral cannabidiol at 2-5 mg/kg per day, up-titrated until intolerance or to a maximum dose of 25 mg/kg or 50 mg/kg per day (dependent on study site). The primary objective was to establish the safety and tolerability of cannabidiol and the primary efficacy endpoint was median percentage change in the mean monthly frequency of motor seizures at 12 weeks. The efficacy analysis was by modified intention to treat. Comparisons of the percentage change in frequency of motor seizures were done with a Mann-Whitney U test. RESULTS: Between Jan 15, 2014, and Jan 15, 2015, 214 patients were enrolled; 162 (76%) patients who had at least 12 weeks of follow-up after the first dose of cannabidiol were included in the safety and tolerability analysis, and 137 (64%) patients were included in the efficacy analysis. In the safety group, 33 (20%) patients had Dravet syndrome and 31 (19%) patients had Lennox-Gastaut syndrome. The remaining patients had intractable epilepsies of different causes and type. Adverse events were reported in 128 (79%) of the 162 patients within the safety group. Adverse events reported in more than 10% of patients were somnolence (n=41 [25%]), decreased appetite (n=31 [19%]), diarrhoea (n=31 [19%]), fatigue (n=21 [13%]), and convulsion (n=18 [11%]). Five (3%) patients discontinued treatment because of an adverse event. Serious adverse events were reported in 48 (30%) patients, including one death-a sudden unexpected death in epilepsy regarded as unrelated to study drug. 20 (12%) patients had severe adverse events possibly related to cannabidiol use, the most common of which was status epilepticus (n=9 [6%]). The median monthly frequency of motor seizures was 30.0 (IQR 11.0-96.0) at baseline and 15.8 (5.6-57.6) over the 12 week treatment period. The median reduction in monthly motor seizures was 36.5% (IQR 0-64.7). INTERPRETATION: Our findings suggest that cannabidiol might reduce seizure frequency and might have an adequate safety profile in children and young adults with highly treatment-resistant epilepsy. Randomised controlled trials are warranted to characterise the safety profile and true efficacy of this compound. FUNDING: GW Pharmaceuticals, Epilepsy Therapy Project of the Epilepsy Foundation, Finding A Cure for Epilepsy and Seizures.


Anticonvulsants/pharmacology , Cannabidiol/pharmacology , Drug Resistant Epilepsy/drug therapy , Epilepsies, Myoclonic/drug therapy , Lennox Gastaut Syndrome/drug therapy , Outcome Assessment, Health Care , Seizures/drug therapy , Adolescent , Adult , Age of Onset , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Cannabidiol/administration & dosage , Cannabidiol/adverse effects , Child , Child, Preschool , Drug Therapy, Combination , Female , Humans , Infant , Male , Young Adult
5.
ISRN Neurol ; 2014: 619079, 2014.
Article En | MEDLINE | ID: mdl-24634784

Continuous spike and wave during slow wave sleep (CSWS) is an epileptic encephalopathy that presents with neurocognitive regression and clinical seizures, and that demonstrates an electroencephalogram (EEG) pattern of electrical status epilepticus during sleep, as defined by the Commission on Classification and Terminology of the International League Against Epilepsy 1989. CSWS is an age-related condition, typically presenting in children around 5 years of age, with clinical seizures which progress within 2 years to a severe epileptic encephalopathy. The pathophysiology of CSWS is not completely understood, but the corticothalamic neuronal network involved in sleep patterns is thought to be involved. Genetic predisposition and injury in early development are thought to play etiological roles. Treatment strategies have involved traditional anticonvulsants, hormonal therapies, and other newer techniques. Outcomes are fair, and the thought is that earlier diagnosis and intervention preserve neurocognitive development, as in the case of other epileptic encephalopathies. Further understanding of the mechanisms of CSWS may lead to improved therapeutic options and thus outcomes of children with CSWS.

6.
Neurology ; 81(6): 581-4, 2013 Aug 06.
Article En | MEDLINE | ID: mdl-23825175

OBJECTIVE: Trauma and infection have been postulated as "triggers" for hemorrhage from underlying brain vascular lesions (arteriovenous malformations, cavernous malformations, and aneurysms) in pediatric hemorrhagic stroke. We decided to perform an association study examining these environmental risk factors. METHODS: In this case-control study nested within the cohort of 2.3 million children enrolled in a Northern California integrated health plan (1993-2004), we identified childhood hemorrhagic stroke cases through electronic searches of diagnostic and radiology databases, confirmed through chart review. Three age- and facility-matched controls per case were randomly selected from the study population. Exposure variables were measured using medical records documented before stroke diagnosis. Main outcome measure was hemorrhagic stroke. RESULTS: Of 132 childhood, non-neonatal hemorrhagic stroke cases, 65 had underlying vascular lesions: 34 arteriovenous malformations, 16 cavernous malformations, and 15 aneurysms. A documented exposure to head and neck trauma in the prior 12 weeks was present in 3 cases (4.6%) with underlying vascular lesions, compared with no controls (p < 0.015). However, all 3 vascular lesions were aneurysms, and traumatic pseudoaneurysms were possible. Recent minor infection (prior 4 weeks) was present in 5 cases (7.7%) and 9 controls (4.6%) (p = 0.34). CONCLUSIONS: Our observed association between trauma and hemorrhagic stroke with a vascular lesion may be explained by traumatic pseudoaneurysms. Neither recent head or neck trauma nor infection appeared to be a "trigger" for pediatric hemorrhagic stroke due to underlying vascular malformations.


Craniocerebral Trauma/epidemiology , Infections/epidemiology , Intracranial Hemorrhages/epidemiology , Stroke/epidemiology , Vascular Malformations/epidemiology , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Craniocerebral Trauma/diagnosis , Female , Humans , Infant , Infections/diagnosis , Intracranial Hemorrhages/diagnosis , Male , Stroke/diagnosis , Vascular Malformations/diagnosis , Young Adult
...