Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biochem Pharmacol ; 192: 114688, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274354

RESUMEN

Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Naftoles/uso terapéutico , Neuralgia/tratamiento farmacológico , Fosforilación Oxidativa/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Tacto , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Naftoles/farmacología , Neuralgia/metabolismo , Factor de Transcripción STAT3/metabolismo , Sulfonamidas/farmacología
3.
Acta Neuropathol Commun ; 8(1): 193, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183353

RESUMEN

Frequently reported neurotoxic sequelae of cancer treatment include cognitive deficits and sensorimotor abnormalities that have long-lasting negative effects on the quality of life of an increasing number of cancer survivors. The underlying mechanisms are not fully understood and there is no effective treatment. We show here that cisplatin treatment of mice not only caused cognitive dysfunction but also impaired sensorimotor function. These functional deficits are associated with reduced myelin density and complexity in the cingulate and sensorimotor cortex. At the ultrastructural level, myelin abnormalities were characterized by decompaction. We used this model to examine the effect of bexarotene, an agonist of the RXR-family of nuclear receptors. Administration of only five daily doses of bexarotene after completion of cisplatin treatment was sufficient to normalize myelin density and fiber coherency and to restore myelin compaction in cingulate and sensorimotor cortex. Functionally, bexarotene normalized performance of cisplatin-treated mice in tests for cognitive and sensorimotor function. RNAseq analysis identified the TR/RXR pathway as one of the top canonical pathways activated by administration of bexarotene to cisplatin-treated mice. Bexarotene also activated neuregulin and netrin pathways that are implicated in myelin formation/maintenance, synaptic function and axonal guidance. In conclusion, short term treatment with bexarotene is sufficient to reverse the adverse effects of cisplatin on white matter structure, cognitive function, and sensorimotor performance. These encouraging findings warrant further studies into potential clinical translation and the underlying mechanisms of bexarotene for chemobrain.


Asunto(s)
Antineoplásicos/farmacología , Bexaroteno/farmacología , Cisplatino/toxicidad , Cognición/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Corteza Sensoriomotora/efectos de los fármacos , Animales , Antineoplásicos/toxicidad , Deterioro Cognitivo Relacionado con la Quimioterapia/metabolismo , Deterioro Cognitivo Relacionado con la Quimioterapia/patología , Deterioro Cognitivo Relacionado con la Quimioterapia/fisiopatología , Marcha/efectos de los fármacos , Perfilación de la Expresión Génica , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Giro del Cíngulo/fisiopatología , Ratones , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Netrinas/efectos de los fármacos , Netrinas/genética , Netrinas/metabolismo , Neurregulinas/efectos de los fármacos , Neurregulinas/genética , Neurregulinas/metabolismo , Prueba de Campo Abierto , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , RNA-Seq , Receptores X Retinoide/efectos de los fármacos , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/patología , Corteza Sensoriomotora/fisiopatología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
4.
Proc Natl Acad Sci U S A ; 117(10): 5463-5471, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32079726

RESUMEN

Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, Pi16-/- mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.


Asunto(s)
Fibroblastos/enzimología , Neuralgia/genética , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Animales , Movimiento Celular , Dolor Crónico , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Ganglios Espinales , Leucocitos/fisiología , Meninges/citología , Ratones Noqueados , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/enzimología
5.
Pain ; 159(5): 884-893, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29369966

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.


Asunto(s)
Antineoplásicos/efectos adversos , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Hiperalgesia/tratamiento farmacológico , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Animales , Astrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Hiperalgesia/etiología , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Fibras Nerviosas/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Médula Espinal/efectos de los fármacos
6.
Sci Rep ; 6: 36370, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808165

RESUMEN

Exchange protein directly activated by cAMP-1 (Epac1) is a cAMP sensor that regulates multiple cellular functions including cellular migration, proliferation and differentiation. Classically, Epac1 is thought to exert its effects through binding of cAMP leading to a conformational change in Epac1 and its accumulation at the plasma membrane (PM) where it activates Rap1. In search for regulators of Epac1 activity, we show here that importin ß1 (impß1) is an Epac1 binding partner that prevents PM accumulation of Epac1. We demonstrate that in the absence of impß1, endogenous as well as overexpressed Epac1 accumulate at the PM. Moreover, agonist-induced PM translocation of Epac1 leads to dissociation of Epac1 from impß1. Localization of Epac1 at the PM in the absence of impß1, requires residue R82 in its DEP domain. Notably, the PM accumulation of Epac1 in the absence of impß1 does not require binding of cAMP to Epac1 and does not result in Rap1 activation. Functionally, PM accumulation of Epac1, an Epac1 mutant deficient in cAMP binding, or an Epac1 mutant tethered to the PM, is sufficient to inhibit neurite outgrowth. In conclusion, we uncover a cAMP-independent function of Epac1 at the PM and demonstrate that impß1 controls subcellular localization of Epac1.


Asunto(s)
Membrana Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proyección Neuronal , beta Carioferinas/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Proteómica , Proteínas de Unión al GTP rap1/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(11): 3036-41, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929333

RESUMEN

cAMP signaling plays a key role in regulating pain sensitivity. Here, we uncover a previously unidentified molecular mechanism in which direct phosphorylation of the exchange protein directly activated by cAMP 1 (EPAC1) by G protein kinase 2 (GRK2) suppresses Epac1-to-Rap1 signaling, thereby inhibiting persistent inflammatory pain. Epac1(-/-) mice are protected against inflammatory hyperalgesia in the complete Freund's adjuvant (CFA) model. Moreover, the Epac-specific inhibitor ESI-09 inhibits established CFA-induced mechanical hyperalgesia without affecting normal mechanical sensitivity. At the mechanistic level, CFA increased activity of the Epac target Rap1 in dorsal root ganglia of WT, but not of Epac1(-/-), mice. Using sensory neuron-specific overexpression of GRK2 or its kinase-dead mutant in vivo, we demonstrate that GRK2 inhibits CFA-induced hyperalgesia in a kinase activity-dependent manner. In vitro, GRK2 inhibits Epac1-to-Rap1 signaling by phosphorylation of Epac1 at Ser-108 in the Disheveled/Egl-10/pleckstrin domain. This phosphorylation event inhibits agonist-induced translocation of Epac1 to the plasma membrane, thereby reducing Rap1 activation. Finally, we show that GRK2 inhibits Epac1-mediated sensitization of the mechanosensor Piezo2 and that Piezo2 contributes to inflammatory mechanical hyperalgesia. Collectively, these findings identify a key role of Epac1 in chronic inflammatory pain and a molecular mechanism for controlling Epac1 activity and chronic pain through phosphorylation of Epac1 at Ser-108. Importantly, using the Epac inhibitor ESI-09, we validate Epac1 as a potential therapeutic target for chronic pain.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Hiperalgesia/fisiopatología , Inflamación/complicaciones , Nocicepción/fisiología , Dolor/fisiopatología , Secuencia de Aminoácidos , Animales , Enfermedad Crónica , Adyuvante de Freund/toxicidad , Ganglios Espinales/fisiopatología , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Hiperalgesia/etiología , Inflamación/inducido químicamente , Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/fisiología , Dolor/etiología , Umbral del Dolor/fisiología , Fosforilación , Fosfoserina/metabolismo , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transducción de Señal , Proteínas de Unión al GTP rap1/fisiología
8.
PLoS One ; 6(5): e20397, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21633703

RESUMEN

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.


Asunto(s)
Centrosoma/metabolismo , Segregación Cromosómica , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Apoptosis , Western Blotting , Línea Celular Tumoral , Citocinesis , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Microscopía Fluorescente , Mitosis , Proteínas del Tejido Nervioso/genética , Unión Proteica , Interferencia de ARN , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
9.
Gene ; 424(1-2): 40-7, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18721868

RESUMEN

The SLC22A18/SLC22A18AS genes are a sense-antisense pair located at human chromosome segment 11p15.5. These genes are paternally imprinted: paternal alleles are silenced and maternal alleles are expressed. Although SLC22A18 is a well-characterized gene, very little is known regarding its antisense partner SLC22A18AS. We therefore sought to identify the potential cis-regulating elements including the promoter of this gene, differentially methylated regions (DMRs) and the translation of its putative ORF. Dual promoters (P1 and P2) were identified for this gene and both are devoid of consensus TATA and CCAAT boxes. However, the P1 promoter harbors a putative Sp1 binding site. Sp1 binds to the P1 promoter in vivo and positively regulates its activity. Promoter and CpG II island regions showed heavy methylation of CpG sites, but no DMRs were observed. Treatment of a non-SLC22A18AS expressing HuH7 cells with the methyltransferase inhibitor 5-aza-2'-deoxycytidine restored expression of this gene. The histone deacetylase (HDAC) inhibitor Trichostatin-A, on the other hand, failed to induce its expression. We suggest that the expression of this gene is methylation-dependent, but histone acetylation-independent. This gene was found to be translated with a cytoplasmic localization. The present data will help to understand the regulation of this gene and its role in tumorigenesis.


Asunto(s)
Cromosomas Humanos Par 11 , Regulación de la Expresión Génica , Impresión Genómica , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas , Adenocarcinoma , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , ADN/genética , ADN/aislamiento & purificación , Metilación de ADN , Genes Reporteros , Genoma Humano , Humanos , Neoplasias Hepáticas , Neoplasias Pulmonares , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , ARN/aislamiento & purificación , ARN Mensajero/genética , Factores de Transcripción/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...