Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Environ Geochem Health ; 46(7): 251, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38878071

In the quest of achieving sustainable crop productivity, improved soil health, and increased carbon (C) sequestration in the soil, conservation agriculture (CA) is increasingly being promoted and adopted in the Indian subcontinent. However, because some researchers from different regions of the world have reported reduced crop yield under CA relative to agriculture based on conventional tillage (CT), a meta-analysis has been conducted based on published research from India to evaluate the effects of CA on the yield of crops, accumulation of soil organic C as an index of soil health, and C sequestration in the soil in different regions and soil textural groups in the country. The meta-analysis is based on 544 paired observations under CA and CT from 35 publications from India was carried out using Meta Win 2.1 software. The results showed an overall significant (p < 0.05) reduction of 1.15% crop yield under CA compared to CT. Yearwise data showed a reduction of yields under CA from 2009 to 2016, but an increase from 2017 to 2020. Yield reduction was observed in the eastern, north-eastern, and southern regions of India but in western, northern, and north-western regions of the country, an increase was observed under CA rather than CT. Sandy loam and clayey soils exhibited higher crop yield under CA than under CT. Compared to CT, soil organic C content and soil C sequestration under CA increased by 8.9% and 7.3%, respectively. Also, in all the regions and soil textural groups both soil organic C accumulation and soil C sequestration were higher under CA than under CT. Factors such as rainfall, soil depth, available nitrogen (N), and total N significantly influenced the extent of yield increase/decrease and soil organic C accumulation under CA. Overall, results of the meta-analysis suggest that the promotion of CA in India will have to be location-specific taking into consideration the crops, soil attributes, and climatic conditions.


Agriculture , Carbon Sequestration , Conservation of Natural Resources , Crops, Agricultural , Soil , India , Soil/chemistry , Agriculture/methods , Carbon/analysis
2.
Front Plant Sci ; 14: 1153500, 2023.
Article En | MEDLINE | ID: mdl-37082340

The present experiment was conducted to assess the impact of fixed and variable doses (using a normalized difference vegetation index-sensor) of nitrogen (N) on wheat yields, nutrient uptake, nitrogen use efficiency, and soil nitrogen balance through the optimization of nitrogen dose. There were 10 treatments based on fixed and variable doses with different splits, and each treatment was replicated three times under a randomized complete block design. The treatments comprised fixed doses of 120 and 150 kg N ha-1 with different splits; variable doses based on sensor readings after application of 60, 90, and 120 kg N ha-1; 225 kg N ha-1 as a nitrogen-rich control; and no application of nitrogen as the absolute control. It was revealed that the application of a basal dose of 60 kg N ha-1 and another 60 kg N ha-1 at the crown root initiation stage followed by a sensor-guided N application significantly improved wheat grain yields and grain nitrogen uptake. However, straw nitrogen uptake was highest in N-rich plots where 225 kg N ha-1was applied. It was found that any curtailment in these doses at basal and crown root initiation stages followed by nitrogen application using a normalized difference vegetation index sensor later could not bring about higher crop yields. On average, wheat crops responded to 152-155 kg N ha-1 in both years of the study. Partial factor productivity along with agronomic and economic nitrogen use efficiency showed a declining trend with an increased rate of N application. Apparent N recovery values were comparable between normalized difference vegetation index sensor-based N application treatments and treatments receiving lesser N doses. Soil N status decreased in all the treatments except the nitrogen-rich strip, where there was a marginal increase in soil N status after the wheat crop harvest in the rotation. Partial nitrogen balance was negative for all the treatments except the control. From these 2-year field trials, it can be concluded that applying a normalized difference vegetation index sensor could be an essential tool for the rational management of fertilizer nitrogen in wheat grown in eastern sub-Himalayan plains.

3.
PLoS One ; 16(12): e0259645, 2021.
Article En | MEDLINE | ID: mdl-34914729

Conservation agriculture-based sustainable intensification (CASI) technologies comprising zero-tillage with crop residue retention (>30%) on the soil surface, diversified cropping systems, and balanced nutrient management are recognized as operative and efficacious strategies to ensure food security in the parts of South Asia. The present investigation was a component of CASI technologies undertaken in the farmers' field of Malda (old alluvial Inceptisol) Coochbehar (recent alluvial Entisol) district, West Bengal (subtropical eastern India). This study was conducted to evaluate the short-term impact of contrasting tillage (zero and conventional) and cropping systems (rice-wheat and rice-maize) on total organic carbon (TOC) and its fractions, viz., labile pool-1 (LP1), labile pool-2 (LP2) and recalcitrant carbon (RC) fractions after 4-year trial of conservation agriculture (CA) in the old and recent alluvial soils. Soil samples were collected from three depths (0-5, 5-10, and 10-20 cm), and thus, our study was focused on two factors, viz., cropping system and tillage. Results pointed that TOC along with LP1, LP2, and RC fractions under rice-maize (RM) cropping system were significantly (p<0.05) greater (15-35%) over rice-wheat (RW) system as a result of higher residue biomass addition. Zero-tillage (ZT) improved the C fractions by 10-20% over conventional tillage (CT) in all aspects. TOC and its fractions were observed to be greater under the ZT system in the topmost soil depths (0-5 and 5-10 cm), but the same system failed to improve these at 10-20 cm. Interestingly, the CT increased all the fractions at 10-20 cm depth due to the incorporation of crop residues. The concentration of TOC along with its fractions decreased with increasing soil depth was evident. Comparatively, all the C fractions, including TOC were maximum in soils from Malda sites as compared to Coochbehar sites because of a higher amount of residue biomass application, higher clay content, and greater background content of C in these soils. All the studied C fractions showed a significant correlation (r = >0.635; p<0.01) with TOC among all the soil depths in both the districts but the relationship with soil texture showed some interesting results. TOC fractions were significantly correlated (p<0.01) with clay particles indicating that its higher stabilization with clay in old alluvial Inceptisol (Malda); while in recent alluvial Entisol (Coochbehar), sand particle showed its strong relation with TOC fractions. Higher stratification ratio (SR) in the ZT system suggested that the concentration of TOC and its fractions are confined to the upper soil layers whereas in the case of CT, by and large, the distribution of these was comparatively high in subsequent soil depths due to residue incorporation effect. The concentration of C fractions in soils followed the order: TOC > RC > LP2 > LP1. The present investigation concluded that ZT under the RM system increases the turnover rates of C in both soil types but the amount of clay influences the stabilization/storage of C.


Carbon/analysis , Soil/chemistry , Agriculture , India , Oryza/growth & development , Triticum/growth & development , Zea mays/growth & development
...