Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Front Cell Dev Biol ; 10: 957800, 2022.
Article En | MEDLINE | ID: mdl-36003145

Bone remodeling is a physiological, dynamic process that mainly depends on the functions of 2 cell types: osteoblasts and osteoclasts. Emerging evidence suggests that complement system is crucially involved in the regulation of functions of these cells, especially during inflammatory states. In this context, complement component 5a (C5a), a powerful pro-inflammatory anaphylatoxin that binds the receptor C5aR1, is known to regulate osteoclast formation and osteoblast inflammatory responses, and has thus been proposed as potential therapeutic target for the treatment of inflammatory bone diseases. In this review, we will analyze the role of C5a-C5aR1 axis in bone physiology and pathophysiology, describing its involvement in the pathogenesis of some of the most frequent inflammatory bone diseases such as rheumatoid arthritis, and also in osteoporosis and bone cancer and metastasis. Moreover, we will examine C5aR1-based pharmacological approaches that are available and have been tested so far for the treatment of these conditions. Given the growing interest of the scientific community on osteoimmunology, and the scarcity of data regarding the role of C5a-C5aR1 axis in bone pathophysiology, we will highlight the importance of this axis in mediating the interactions between skeletal and immune systems and its potential use as a therapeutic target.

2.
Cell Death Dis ; 13(5): 500, 2022 05 25.
Article En | MEDLINE | ID: mdl-35614037

Chemotherapy-induced peripheral neuropathy (CIPN) and hypersensitivity reactions (HSRs) are among the most frequent and impairing side effects of the antineoplastic agent paclitaxel. Here, we demonstrated that paclitaxel can bind and activate complement component 5a receptor 1 (C5aR1) and that this binding is crucial in the etiology of paclitaxel-induced CIPN and anaphylaxis. Starting from our previous data demonstrating the role of interleukin (IL)-8 in paclitaxel-induced neuronal toxicity, we searched for proteins that activate IL-8 expression and, by using the Exscalate platform for molecular docking simulations, we predicted the high affinity of C5aR1 with paclitaxel. By in vitro studies, we confirmed the specific and competitive nature of the C5aR1-paclitaxel binding and found that it triggers intracellularly the NFkB/P38 pathway and c-Fos. In F11 neuronal cells and rat dorsal root ganglia, C5aR1 inhibition protected from paclitaxel-induced neuropathological effects, while in paclitaxel-treated mice, the absence (knock-out mice) or the inhibition of C5aR1 significantly ameliorated CIPN symptoms-in terms of cold and mechanical allodynia-and reduced the chronic pathological state in the paw. Finally, we found that C5aR1 inhibition can counteract paclitaxel-induced anaphylactic cytokine release in macrophages in vitro, as well as the onset of HSRs in mice. Altogether these data identified C5aR1 as a key mediator and a new potential pharmacological target for the prevention and treatment of CIPN and HSRs induced by paclitaxel.


Antineoplastic Agents , Peripheral Nervous System Diseases , Animals , Antineoplastic Agents/toxicity , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Mice , Molecular Docking Simulation , Paclitaxel , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Rats , Receptor, Anaphylatoxin C5a/therapeutic use
3.
J Med Chem ; 64(22): 16820-16837, 2021 11 25.
Article En | MEDLINE | ID: mdl-34762442

Transient receptor potential melastatin 8 (TRPM8) is crucially involved in pain modulation and perception, and TRPM8 antagonists have been proposed as potential therapeutic approaches for pain treatment. Previously, we developed two TRPM8 antagonists and proposed them as drug candidates for topical and systemic pain treatment. Here, we describe the design and synthesis of these two TRPM8 antagonists (27 and 45) and the rational approach of modulation/replacement of bioisosteric chemical groups, which allowed us to identify a combination of narrow ranges of pKa and LogD values that were crucial to ultimately optimize their potency and metabolic stability. Following the same approach, we then pursued the development of new TRPM8 antagonists suitable for the topical treatment of ocular painful conditions and identified two new compounds (51 and 59), N-alkoxy amide derivatives, that can permeate across ocular tissue and reduce the behavioral responses induced by the topical ocular menthol challenge in vivo.


Analgesics/chemistry , Analgesics/pharmacology , Drug Discovery , Eye Diseases/drug therapy , Pain Management/methods , TRPM Cation Channels/antagonists & inhibitors , HEK293 Cells , Humans , Structure-Activity Relationship
4.
Biomed Pharmacother ; 139: 111613, 2021 Jul.
Article En | MEDLINE | ID: mdl-33895521

G-protein coupled receptors 40 and 120 (GPR40 and GPR120) are increasingly emerging as potential therapeutic targets for the treatment of altered glucose homeostasis, and their agonists are under evaluation for their glucagon-like peptide-1 (GLP-1)-mediated therapeutic effects on insulin production and sensitivity. Here, we characterized a new dual GPR40 and GPR120 agonist (DFL23916) and demonstrated that it can induce GLP-1 secretion and improve glucose homeostasis. Resulting from a rational drug design approach aimed at identifying new dual GPR120/40 agonists able to delay receptor internalization, DFL23916 had a good activity and a very high selectivity towards human GPR120 (long and short isoforms) and GPR40, as well as towards their mouse orthologous, by which it induced both Gαq/11-initiated signal transduction pathways with subsequent Ca2+ intracellular spikes and G protein-independent signaling via ß-arrestin with the same activity. Compared to the endogenous ligand alpha-linolenic acid (ALA), a selective GPR120 agonist (TUG-891) and a well-known dual GPR40 and GPR120 agonist (GW9508), DFL23916 was the most effective in inducing GLP-1 secretion in human and murine enteroendocrine cells, and this could be due to the delayed internalization of the receptor (up to 3 h) that we observed after treatment with DFL23916. With a good pharmacokinetic/ADME profile, DFL23916 significantly increased GLP-1 portal vein levels in healthy mice, demonstrating that it can efficiently induce GLP-1 secretion in vivo. Contrary to the selective GPR120 agonist (TUG-891), DFL23916 significantly improved also glucose homeostasis in mice undergoing an oral glucose tolerance test (OGTT).


Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Calcium/metabolism , Cell Line, Tumor , Cricetulus , Glucagon-Like Peptide 1/blood , Homeostasis/drug effects , Humans , Male , Mice, Inbred C57BL
5.
Proc Natl Acad Sci U S A ; 115(5): E906-E915, 2018 01 30.
Article En | MEDLINE | ID: mdl-29339502

The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63's transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.


Cleft Lip/genetics , Cleft Palate/genetics , Eye Abnormalities/genetics , Phosphoproteins/genetics , Skin/pathology , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Animals , Ectoderm/metabolism , Frameshift Mutation , HEK293 Cells , Heterozygote , Humans , Mice , Mutation , Mutation, Missense , Protein Binding , Protein Denaturation , Transcription, Genetic
6.
Nucleic Acids Res ; 43(2): 862-74, 2015 Jan.
Article En | MEDLINE | ID: mdl-25567987

p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis.


Enhancer Elements, Genetic , Epidermis/embryology , Epidermis/metabolism , Gene Expression Regulation, Developmental , Keratinocytes/metabolism , Phosphoproteins/genetics , Trans-Activators/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Humans , Keratinocytes/cytology , Mice, Inbred C57BL , Morphogenesis/genetics , Transcription Factors/metabolism , Transcriptional Activation
7.
J Invest Dermatol ; 134(8): 2154-2162, 2014 Aug.
Article En | MEDLINE | ID: mdl-24594668

Epidermal structure is damaged by exposure to UV light, but the molecular mechanisms governing structural repair are largely unknown. UVB (290-320 nm wavelengths) exposure before induction of differentiation reduced expression of differentiation-associated proteins, including desmoglein 1 (Dsg1), desmocollin 1 (Dsc1), and keratins 1 and 10 (K1/K10), in a dose-dependent manner in normal human epidermal keratinocytes (NHEKs). The UVB-induced reduction in both Dsg1 transcript and protein was associated with reduced binding of the p63 transcription factor to previously unreported enhancer regulatory regions of the Dsg1 gene. As Dsg1 promotes epidermal differentiation in addition to participating in cell-cell adhesion, the role of Dsg1 in aiding differentiation after UVB damage was tested. Compared with controls, depleting Dsg1 via short hairpin RNA resulted in further reduction of Dsc1 and K1/K10 expression in monolayer NHEK cultures and in abnormal epidermal architecture in organotypic skin models recovering from UVB exposure. Ectopic expression of Dsg1 in keratinocyte monolayers rescued the UVB-induced differentiation defect. Treatment of UVB-exposed monolayer or organotypic cultures with trichostatin A, a histone deacetylase inhibitor, partially restored differentiation marker expression, suggesting a potential therapeutic strategy for reversing UV-induced impairment of epidermal differentiation after acute sun exposure.


Desmoglein 1/physiology , Epidermis/radiation effects , Cell Differentiation , Cells, Cultured , Desmoglein 1/genetics , Epidermal Cells , Humans , Hydroxamic Acids/pharmacology , RNA, Messenger/analysis , Ultraviolet Rays
...