Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 242(Pt 1): 124599, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116835

RESUMEN

Two different biocleaning techniques for stamp removal from different paper samples (handmade and machine-made) were investigated. Cellulose is the main component of handmade paper, while higher concentration of lignin is present in machine-made paper. Biocleaning methods included the direct application on paper surfaces of the extracellular enzymatic mixture (EEM) extracted from the yeast Sporidiobolus metaroseus and the recombinant protein CthediskatG of Chaetomium thermophilum var. dissitum. The produced microbial enzymes (EEM or CthediskatG) were also combined with agarose hydrogels. The effectiveness of the cleaning ability of the individual methods was determined using different spectrophotometer measurements based on colorimetric analysis and by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Some tested samples were also subjected to microstructural and chemical analysis using Scanning Electron Microscope-Energy-Dispersive X-ray spectroscopy (SEM-EDX). The analysis showed that the EEM-based approaches were the most suitable, mainly they are less time-consuming and easy to produce, and moreover slight differences were displayed between EEM and CthediskatG during the removal of the stamp by hydrogel-enzyme approaches. Both EEM applications (direct and hydrogel) speed up the stamp removal process from real paper samples. However, for the complete elimination of the stamp smears a quick N,N-dimethylformamide post-treatment is advised too.


Asunto(s)
Celulosa , Lignina , Celulosa/química , Lignina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría por Rayos X , Hidrogeles
2.
Polymers (Basel) ; 13(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771374

RESUMEN

Conductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)-based composites and changes in electroconductive paths during cyclic deformation. TPS-based composites filled with various carbon black (CB) contents were prepared through melt processing. The electrical conductivity and physicochemical properties of TPS-CB composites, including mechanical properties and rheological behavior, were evaluated. With increasing CB content, the tensile strength and Young's modulus were found to increase substantially. We found a percolation threshold for the CB loading of approximately 5.5 wt% based on the rheology and electrical conductivity. To observe the changing structure of the conductive CB paths during cyclic deformation, both the electrical conductivity and mechanical properties were recorded in parallel using online measurements. Moreover, the instant electrical conductivity measured online during mechanical deformation of the materials was taken as the parameter indirectly describing the structure of the conductive CB network. The electrical conductivity was found to increase during five runs of repeated cyclic mechanical deformations to constant deformation below strain at break, indicating good recovery of conductive paths and their new formation.

3.
ACS Appl Mater Interfaces ; 13(34): 41021-41033, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405995

RESUMEN

The efficiency of filtration membranes is substantially lowered by bacterial attachments and potential fouling processes, which reduce their durability and lifecycle. The antibacterial and antifouling properties exhibited by the added materials play a substantial role in their application. We tested a material poly(vinylidene fluoride)-co-hexafluoropropylene (PDVF-co-HFP) based on an electrospun copolymer, where an agent was incorporated with a small amount of ester of glycerol consecutively with caprylic, capric, and lauric acids. Each of these three materials differing in the esters (1-monoacylglycerol, 1-MAG) used was prepared with three weighted concentrations of 1-MAG (1, 2, and 3 wt %). The presence of 1-MAG with an amphiphilic structure resulted in the hydrophilic character of the prepared materials that contributed to the filtration performance. The tested materials (membranes) were characterized with rheological, optical (scanning electron microscopy, SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and other methods to evaluate antibacterial and antifouling activities. The pure water flux was 6 times higher than that of the neat PVDF-co-HFP membrane when the added 1-MAG attained only 1 wt %. It was experimentally shown that the PVDF-co-HFP/1-MAG membrane with high wettability improved antibacterial activity and antifouling ability. This membrane is highly promising for water treatment due to the safety of antibacterial 1-MAG additives.


Asunto(s)
Antibacterianos/farmacología , Polímeros de Fluorocarbono/farmacología , Monoglicéridos/farmacología , Nanofibras/química , Polivinilos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Filtración/instrumentación , Polímeros de Fluorocarbono/química , Membranas Artificiales , Pruebas de Sensibilidad Microbiana , Monoglicéridos/química , Polivinilos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Humectabilidad
4.
Materials (Basel) ; 14(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443216

RESUMEN

In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.

5.
Polymers (Basel) ; 13(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34301035

RESUMEN

From the environmental point of view, there is high demand for the preparation of polymeric materials for various applications from renewable and/or waste sources. New lignin-based spun fibers were produced, characterized, and probed for use in methylene blue (MB) dye removal in this study. The lignin was extracted from palm fronds (PF) and banana bunch (BB) feedstock using catalytic organosolv treatment. Different polymer concentrations of either a plasticized blend of renewable polymers such as polylactic acid/polyhydroxybutyrate blend (PLA-PHB-ATBC) or polyethylene terephthalate (PET) as a potential waste material were used as matrices to generate lignin-based fibers by the electrospinning technique. The samples with the best fiber morphologies were further modified after iodine handling to ameliorate and expedite the thermostabilization process. To investigate the adsorption of MB dye from aqueous solution, two approaches of fiber modification were utilized. First, electrospun fibers were carbonized at 500 °C with aim of generating lignin-based carbon fibers with a smooth appearance. The second method used an in situ oxidative chemical polymerization of m-toluidine monomer to modify electrospun fibers, which were then nominated by hybrid composites. SEM, TGA, FT-IR, BET, elemental analysis, and tensile measurements were employed to evaluate the composition, morphology, and characteristics of manufactured fibers. The hybrid composite formed from an OBBL/PET fiber mat has been shown to be a promising adsorbent material with a capacity of 9 mg/g for MB dye removal.

6.
J Biotechnol ; 335: 55-64, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34090948

RESUMEN

Biocleaning of cultural heritage items is mainly performed using living microorganisms. Approaches utilizing the enzymes of isolated microorganisms have not been frequently investigated. To find an enzymatic alternative for the removal of an oil-based overpainting, we focused on the characterization and use of a yeast Extracellular Enzymatic Mixture (EEM). A historical silk yeast was selected for its lipolytic properties and its EEM was extracted after cultivation on a medium supplemented with linseed oil. The EEM protein content was visualized by SDS-PAGE, its concentration assessed by fluorimeter and the enzymatic activity evaluated by p-NPP spectrophotometric lipase assay. The yeast growth was suppressed by adding diverse metal ions (Cd, Zn, Cr and Cu) in Reasoner's 2A (R2A) broth, while the quantity and activity of EEM were affected by adding Fe and Pb. Various delivery systems (agar-agar, tylose and klucel G) alone or in a combination with EEM were assayed on the historical painting surface. The colorimetric measurements and the ATR-FTIR analysis indicated that the combinations tylose-EEM and klucel G-EEM can be easily and effectively applied as biocleaning procedures to remove oil-based overpainting from fragile and valuable historical painting surfaces.


Asunto(s)
Metales , Saccharomyces cerevisiae , Agar , Medios de Cultivo , Lipasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...