Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Med Phys ; 51(6): 4158-4180, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733602

PURPOSE: Interventional Cone-Beam CT (CBCT) offers 3D visualization of soft-tissue and vascular anatomy, enabling 3D guidance of abdominal interventions. However, its long acquisition time makes CBCT susceptible to patient motion. Image-based autofocus offers a suitable platform for compensation of deformable motion in CBCT, but it relies on handcrafted motion metrics based on first-order image properties and that lack awareness of the underlying anatomy. This work proposes a data-driven approach to motion quantification via a learned, context-aware, deformable metric, VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ , that quantifies the amount of motion degradation as well as the realism of the structural anatomical content in the image. METHODS: The proposed VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ was modeled as a deep convolutional neural network (CNN) trained to recreate a reference-based structural similarity metric-visual information fidelity (VIF). The deep CNN acted on motion-corrupted images, providing an estimation of the spatial VIF map that would be obtained against a motion-free reference, capturing motion distortion, and anatomic plausibility. The deep CNN featured a multi-branch architecture with a high-resolution branch for estimation of voxel-wise VIF on a small volume of interest. A second contextual, low-resolution branch provided features associated to anatomical context for disentanglement of motion effects and anatomical appearance. The deep CNN was trained on paired motion-free and motion-corrupted data obtained with a high-fidelity forward projection model for a protocol involving 120 kV and 9.90 mGy. The performance of VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ was evaluated via metrics of correlation with ground truth VIF ${\bm{VIF}}$ and with the underlying deformable motion field in simulated data with deformable motion fields with amplitude ranging from 5 to 20 mm and frequency from 2.4 up to 4 cycles/scan. Robustness to variation in tissue contrast and noise levels was assessed in simulation studies with varying beam energy (90-120 kV) and dose (1.19-39.59 mGy). Further validation was obtained on experimental studies with a deformable phantom. Final validation was obtained via integration of VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ on an autofocus compensation framework, applied to motion compensation on experimental datasets and evaluated via metric of spatial resolution on soft-tissue boundaries and sharpness of contrast-enhanced vascularity. RESULTS: The magnitude and spatial map of VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ showed consistent and high correlation levels with the ground truth in both simulation and real data, yielding average normalized cross correlation (NCC) values of 0.95 and 0.88, respectively. Similarly, VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ achieved good correlation values with the underlying motion field, with average NCC of 0.90. In experimental phantom studies, VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ properly reflects the change in motion amplitudes and frequencies: voxel-wise averaging of the local VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ across the full reconstructed volume yielded an average value of 0.69 for the case with mild motion (2 mm, 12 cycles/scan) and 0.29 for the case with severe motion (12 mm, 6 cycles/scan). Autofocus motion compensation using VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ resulted in noticeable mitigation of motion artifacts and improved spatial resolution of soft tissue and high-contrast structures, resulting in reduction of edge spread function width of 8.78% and 9.20%, respectively. Motion compensation also increased the conspicuity of contrast-enhanced vascularity, reflected in an increase of 9.64% in vessel sharpness. CONCLUSION: The proposed VI F D L ${\bm{VI}}{{\bm{F}}}_{DL}$ , featuring a novel context-aware architecture, demonstrated its capacity as a reference-free surrogate of structural similarity to quantify motion-induced degradation of image quality and anatomical plausibility of image content. The validation studies showed robust performance across motion patterns, x-ray techniques, and anatomical instances. The proposed anatomy- and context-aware metric poses a powerful alternative to conventional motion estimation metrics, and a step forward for application of deep autofocus motion compensation for guidance in clinical interventional procedures.


Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Movement , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Humans
2.
IEEE Trans Biomed Eng ; 71(4): 1298-1307, 2024 Apr.
Article En | MEDLINE | ID: mdl-38048239

Flexible array transducers can adapt to patient-specific geometries during real-time ultrasound (US) image-guided therapy monitoring. This makes the system radiation-free and less user-dependency. Precise estimation of the flexible transducer's geometry is crucial for the delay-and-sum (DAS) beamforming algorithm to reconstruct B-mode US images. The primary innovation of this research is to build a system named FLexible transducer with EXternal tracking (FLEX) to estimate the position of each element of the flexible transducer and reconstruct precise US images. FLEX utilizes customized optical markers and a tracker to monitor the probe's geometry, employing a polygon fitting algorithm to estimate the position and azimuth angle of each transducer element. Subsequently, the traditional DAS algorithm processes the delay estimation from the tracked element position, reconstructing US images from radio-frequency (RF) channel data. The proposed method underwent evaluation on phantoms and cadaveric specimens, demonstrating its clinical feasibility. Deviations in tracked probe geometry compared to ground truth were minimal, measuring 0.50 ± 0.29 mm for the CIRS phantom, 0.54 ± 0.35 mm for the deformable phantom, and 0.36 ± 0.24 mm on the cadaveric specimen. Reconstructing the US image using tracked probe geometry significantly outperformed the untracked geometry, as indicated by a Dice score of 95.1 ± 3.3% versus 62.3 ± 9.2% for the CIRS phantom. The proposed method achieved high accuracy (<0.5 mm error) in tracking the element position for various random curvatures applicable for clinical deployment. The evaluation results show that the radiation-free proposed method can effectively reconstruct US images and assist in monitoring image-guided therapy with minimal user dependency.


Algorithms , Transducers , Humans , Ultrasonography , Phantoms, Imaging , Cadaver
3.
Article En | MEDLINE | ID: mdl-37937266

Purpose: Cone-beam CT (CBCT) is used in interventional radiology (IR) for identification of complex vascular anatomy, difficult to visualize in 2D fluoroscopy. However, long acquisition time makes CBCT susceptible to soft-tissue deformable motion that degrades visibility of fine vessels. We propose a targeted framework to compensate for deformable intra-scan motion via learned full-sequence models for identification of vascular anatomy coupled to an autofocus function specifically tailored to vascular imaging. Methods: The vessel-targeted autofocus acts in two stages: (i) identification of vascular and catheter targets in the projection domain; and, (ii) autofocus optimization for a 4D vector field through an objective function that quantifies vascular visibility. Target identification is based on a deep learning model that operates on the complete sequence of projections, via a transformer encoder-decoder architecture that uses spatial-temporal self-attention modules to infer long-range feature correlations, enabling identification of vascular anatomy with highly variable conspicuity. The vascular autofocus function is derived through eigenvalues of the local image Hessian, which quantify the local image structure for identification of bright tubular structures. Motion compensation was achieved via spatial transformer operators that impart time dependent deformations to NPAR = 90 partial angle reconstructions, allowing for efficient minimization via gradient backpropagation. The framework was trained and evaluated in synthetic abdominal CBCTs obtained from liver MDCT volumes and including realistic models of contrast-enhanced vascularity with 15 to 30 end branches, 1 - 3.5 mm vessel diameter, and 1400 HU contrast. Results: The targeted autofocus resulted in qualitative and quantitative improvement in vascular visibility in both simulated and clinical intra-procedural CBCT. The transformer-based target identification module resulted in superior detection of target vascularity and a lower number of false positives, compared to a baseline U-Net model acting on individual projection views, reflected as a 1.97x improvement in intersection-over-union values. Motion compensation in simulated data yielded improved conspicuity of vascular anatomy, and reduced streak artifacts and blurring around vessels, as well as recovery of shape distortion. These improvements amounted to an average 147% improvement in cross correlation computed against the motion-free ground truth, relative to the un-compensated reconstruction. Conclusion: Targeted autofocus yielded improved visibility of vascular anatomy in abdominal CBCT, providing better potential for intra-procedural tracking of fine vascular anatomy in 3D images. The proposed method poses an efficient solution to motion compensation in task-specific imaging, with future application to a wider range of imaging scenarios.

4.
Med Phys ; 50(5): 2607-2624, 2023 May.
Article En | MEDLINE | ID: mdl-36906915

BACKGROUND: Image-guided neurosurgery requires high localization and registration accuracy to enable effective treatment and avoid complications. However, accurate neuronavigation based on preoperative magnetic resonance (MR) or computed tomography (CT) images is challenged by brain deformation occurring during the surgical intervention. PURPOSE: To facilitate intraoperative visualization of brain tissues and deformable registration with preoperative images, a 3D deep learning (DL) reconstruction framework (termed DL-Recon) was proposed for improved intraoperative cone-beam CT (CBCT) image quality. METHODS: The DL-Recon framework combines physics-based models with deep learning CT synthesis and leverages uncertainty information to promote robustness to unseen features. A 3D generative adversarial network (GAN) with a conditional loss function modulated by aleatoric uncertainty was developed for CBCT-to-CT synthesis. Epistemic uncertainty of the synthesis model was estimated via Monte Carlo (MC) dropout. Using spatially varying weights derived from epistemic uncertainty, the DL-Recon image combines the synthetic CT with an artifact-corrected filtered back-projection (FBP) reconstruction. In regions of high epistemic uncertainty, DL-Recon includes greater contribution from the FBP image. Twenty paired real CT and simulated CBCT images of the head were used for network training and validation, and experiments evaluated the performance of DL-Recon on CBCT images containing simulated and real brain lesions not present in the training data. Performance among learning- and physics-based methods was quantified in terms of structural similarity (SSIM) of the resulting image to diagnostic CT and Dice similarity metric (DSC) in lesion segmentation compared to ground truth. A pilot study was conducted involving seven subjects with CBCT images acquired during neurosurgery to assess the feasibility of DL-Recon in clinical data. RESULTS: CBCT images reconstructed via FBP with physics-based corrections exhibited the usual challenges to soft-tissue contrast resolution due to image non-uniformity, noise, and residual artifacts. GAN synthesis improved image uniformity and soft-tissue visibility but was subject to error in the shape and contrast of simulated lesions that were unseen in training. Incorporation of aleatoric uncertainty in synthesis loss improved estimation of epistemic uncertainty, with variable brain structures and unseen lesions exhibiting higher epistemic uncertainty. The DL-Recon approach mitigated synthesis errors while maintaining improvement in image quality, yielding 15%-22% increase in SSIM (image appearance compared to diagnostic CT) and up to 25% increase in DSC in lesion segmentation compared to FBP. Clear gains in visual image quality were also observed in real brain lesions and in clinical CBCT images. CONCLUSIONS: DL-Recon leveraged uncertainty estimation to combine the strengths of DL and physics-based reconstruction and demonstrated substantial improvements in the accuracy and quality of intraoperative CBCT. The improved soft-tissue contrast resolution could facilitate visualization of brain structures and support deformable registration with preoperative images, further extending the utility of intraoperative CBCT in image-guided neurosurgery.


Deep Learning , Humans , Pilot Projects , Uncertainty , Cone-Beam Computed Tomography/methods , Brain/diagnostic imaging , Brain/surgery , Image Processing, Computer-Assisted/methods , Algorithms
5.
Invest Radiol ; 58(1): 99-110, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-35976763

ABSTRACT: Although musculoskeletal magnetic resonance imaging (MRI) plays a dominant role in characterizing abnormalities, novel computed tomography (CT) techniques have found an emerging niche in several scenarios such as trauma, gout, and the characterization of pathologic biomechanical states during motion and weight-bearing. Recent developments and advancements in the field of musculoskeletal CT include 4-dimensional, cone-beam (CB), and dual-energy (DE) CT. Four-dimensional CT has the potential to quantify biomechanical derangements of peripheral joints in different joint positions to diagnose and characterize patellofemoral instability, scapholunate ligamentous injuries, and syndesmotic injuries. Cone-beam CT provides an opportunity to image peripheral joints during weight-bearing, augmenting the diagnosis and characterization of disease processes. Emerging CBCT technologies improved spatial resolution for osseous microstructures in the quantitative analysis of osteoarthritis-related subchondral bone changes, trauma, and fracture healing. Dual-energy CT-based material decomposition visualizes and quantifies monosodium urate crystals in gout, bone marrow edema in traumatic and nontraumatic fractures, and neoplastic disease. Recently, DE techniques have been applied to CBCT, contributing to increased image quality in contrast-enhanced arthrography, bone densitometry, and bone marrow imaging. This review describes 4-dimensional CT, CBCT, and DECT advances, current logistical limitations, and prospects for each technique.


Bone Marrow Diseases , Gout , Humans , Tomography, X-Ray Computed/methods , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/methods , Edema
6.
J Med Imaging (Bellingham) ; 9(4): 045004, 2022 Jul.
Article En | MEDLINE | ID: mdl-36046335

Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies. Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors. Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT. Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies.

7.
J Med Imaging (Bellingham) ; 8(1): 015002, 2021 Jan.
Article En | MEDLINE | ID: mdl-33604409

Purpose: Percutaneous fracture fixation is a challenging procedure that requires accurate interpretation of fluoroscopic images to insert guidewires through narrow bone corridors. We present a guidance system with a video camera mounted onboard the surgical drill to achieve real-time augmentation of the drill trajectory in fluoroscopy and/or CT. Approach: The camera was mounted on the drill and calibrated with respect to the drill axis. Markers identifiable in both video and fluoroscopy are placed about the surgical field and co-registered by feature correspondences. If available, a preoperative CT can also be co-registered by 3D-2D image registration. Real-time guidance is achieved by virtual overlay of the registered drill axis on fluoroscopy or in CT. Performance was evaluated in terms of target registration error (TRE), conformance within clinically relevant pelvic bone corridors, and runtime. Results: Registration of the drill axis to fluoroscopy demonstrated median TRE of 0.9 mm and 2.0 deg when solved with two views (e.g., anteroposterior and lateral) and five markers visible in both video and fluoroscopy-more than sufficient to provide Kirschner wire (K-wire) conformance within common pelvic bone corridors. Registration accuracy was reduced when solved with a single fluoroscopic view ( TRE = 3.4 mm and 2.7 deg) but was also sufficient for K-wire conformance within pelvic bone corridors. Registration was robust with as few as four markers visible within the field of view. Runtime of the initial implementation allowed fluoroscopy overlay and/or 3D CT navigation with freehand manipulation of the drill up to 10 frames / s . Conclusions: A drill-mounted video guidance system was developed to assist with K-wire placement. Overall workflow is compatible with fluoroscopically guided orthopaedic trauma surgery and does not require markers to be placed in preoperative CT. The initial prototype demonstrates accuracy and runtime that could improve the accuracy of K-wire placement, motivating future work for translation to clinical studies.

8.
Article En | MEDLINE | ID: mdl-33177787

Mammography and breast CT are important tools for breast cancer screening and diagnosis. Current implementations are limited by scattered radiation and/or spatial resolution. In this work, we propose and develop a slot scan-based system to be used in both mammography and CT mode that can limit scatter and collect sparse CT data for improved image quality at low radiation exposures. Monte Carlo simulations of an anthropomorphic breast phantom show a factor of 10 reduction in scattering amplitude with our slot scan-based system compared to that of a full-field detector mammography system (area mode). Similarly, slot-scan improved the MTF (particularly the low-frequency response) compared to an area detector. Investigation of sparse CT sampling with doubly sparse acquisition data return better quality reconstruction, for which our slot-scanning system is capable, over angle-only projection. Thus, a system with the combined ability for slot-scanning mammography and slot-scanning breast CT has the potential to deliver improved dose-efficient imaging performance and become viable breast cancer screening and diagnostic tools.

9.
Skeletal Radiol ; 48(12): 1999-2007, 2019 Dec.
Article En | MEDLINE | ID: mdl-31172206

OBJECTIVES: To evaluate the improvement in extremity cone-beam computed tomography (CBCT) image quality in datasets with motion artifact using a motion compensation method based on maximizing image sharpness. METHODS: Following IRB approval, retrospective analysis of 308 CBCT scans of lower extremities was performed by a fellowship-trained musculoskeletal radiologist to identify images with moderate to severe motion artifact. Twenty-four scans of 22 patients (18 male, four female; mean, 32 years old, range, 21-74 years old) were chosen for inclusion. Sharp (bone) and smooth (soft tissue) reconstructions were processed using the motion compensation algorithm. Two experts rated visualization of trabecular bone, cortical bone, joint spaces, and tendon on a nine-level Likert scale with and without motion compensation (a total of 96 datasets). Visual grading characteristics (VGC) was used to quantitatively determine the difference in image quality following motion compensation. Intra-class correlation coefficient (ICC) was obtained to assess inter-observer agreement. RESULTS: Motion-compensated images exhibited appreciable reduction in artifacts. The observer study demonstrated the associated improvement in diagnostic quality. The fraction of cases receiving scores better than "Fair" increased from less than 10% without compensation to 40-70% following compensation, depending on the task. The area under the VGC curve was 0.75 (tendon) to 0.85 (cortical bone), confirming preference for motion compensated images. ICC values showed excellent agreement between readers before (ICC range, 0.8-0.91) and after motion compensation (ICC range, 0.92-0.97). CONCLUSIONS: The motion compensation algorithm significantly improved the visualization of bone and soft tissue structures in extremity CBCT for cases exhibiting patient motion.


Cone-Beam Computed Tomography/methods , Lower Extremity/diagnostic imaging , Adult , Aged , Algorithms , Artifacts , Female , Humans , Male , Middle Aged , Motion , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies
10.
Article En | MEDLINE | ID: mdl-30556060

Interior tomography is promising approach for retaining high quality CT images within a volume-of-interest (VOI) while reducing the total patient dose. A static collimating filter can only image a centered symmetric VOI, which requires careful patient positioning and may be suboptimal for many clinical applications. Multiple aperture devices (MADs) are an emerging technology based on sequential binary filters that can provide a wide range of fluence patterns that may be adjusted dynamically with relatively small motions. In this work, we introduce a general approach for VOI imaging using MAD-based fluence field modulation (FFM). Physical experiments using a CT test bench are conducted illustrating off-center x-ray beam control for imaging the spine in an abdominal phantom. Image quality and dose metrics are computed for both standard full-field CT and VOI CT. We find that the image quality within the VOI can be preserved for VOI CT with a significant drop in integral dose as compared with a standard full-field protocol.

11.
Article En | MEDLINE | ID: mdl-30519678

Detector lag and gantry motion during x-ray exposure and integration both result in azimuthal blurring in CT reconstructions. These effects can degrade image quality both for high-resolution features as well as low-contrast details. In this work we consider a forward model for model-based iterative reconstruction (MBIR) that is sufficiently general to accommodate both of these physical effects. We integrate this forward model in a penalized, weighted, nonlinear least-square style objective function for joint reconstruction and correction of these blur effects. We show that modeling detector lag can reduce/remove the characteristic lag artifacts in head imaging in both a simulation study and physical experiments. Similarly, we show that azimuthal blur ordinarily introduced by gantry motion can be mitigated with proper reconstruction models. In particular, we find the largest image quality improvement at the periphery of the field-of-view where gantry motion artifacts are most pronounced. These experiments illustrate the generality of the underlying forward model, suggesting the potential application in modeling a number of physical effects that are traditionally ignored or mitigated through pre-corrections to measurement data.

12.
IEEE Trans Med Imaging ; 37(4): 988-999, 2018 04.
Article En | MEDLINE | ID: mdl-29621002

We present a novel reconstruction algorithm based on a general cone-beam CT forward model, which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may include scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function, which incorporates models of blur and correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared with deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared with deblurring followed by FDK, a model-based method without blur, and a model-based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test-bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model-based methods without blur and/or correlation to a registered CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including trabecular thickness (Tb.Th.) were computed for each reconstruction approach as well as the CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared with the CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respectively).


Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Bone and Bones/diagnostic imaging , Humans , Phantoms, Imaging
13.
Med Phys ; 45(1): 114-130, 2018 Jan.
Article En | MEDLINE | ID: mdl-29095489

PURPOSE: Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. METHODS: A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. RESULTS: Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm-1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. CONCLUSIONS: The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans.


Cone-Beam Computed Tomography/instrumentation , Extremities/diagnostic imaging , Metals/chemistry , Oxides/chemistry , Semiconductors , Signal-To-Noise Ratio , Scattering, Radiation
14.
Phys Med Biol ; 62(22): 8693-8719, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-28976368

Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR-viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ([Formula: see text]). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in [Formula: see text], and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.


Algorithms , Cone-Beam Computed Tomography/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Humans , Imaging, Three-Dimensional , Least-Squares Analysis , Point-of-Care Systems
15.
Phys Med Biol ; 62(2): 539-559, 2017 01 21.
Article En | MEDLINE | ID: mdl-28033118

A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.


Cone-Beam Computed Tomography/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Models, Theoretical , Phantoms, Imaging , Algorithms , Artifacts , Cone-Beam Computed Tomography/instrumentation , Humans
16.
Med Phys ; 43(10): 5745, 2016 Oct.
Article En | MEDLINE | ID: mdl-27782694

PURPOSE: A cone-beam CT scanner has been developed for detection and monitoring of traumatic brain injury and acute intracranial hemorrhage (ICH) at the point of care. This work presents a technical assessment of imaging performance and dose for the scanner in phantom and cadaver studies as a prerequisite to clinical translation. METHODS: The scanner incorporates a compact, rotating-anode x-ray source and a flat-panel detector (43 × 43 cm2) on a mobile U-arm gantry with source-axis distance = 550 mm and source-detector distance = 1000 mm. Central and peripheral doses were measured in 16 cm diameter CTDI phantoms using a 0.6 cm3 Farmer ionization chamber for various scan techniques and as a function of longitudinal position, including out of field. Spatial resolution, contrast, noise, and image uniformity were assessed in quantitative and anthropomorphic head phantoms. Two reconstruction protocols were evaluated, including filtered backprojection (FBP) for high-resolution bone imaging and penalized weighted least squares (PWLS) reconstruction for low-contrast soft tissue (ICH) visualization. A fresh cadaver was imaged with and without simulated ICH using the scanner as well as a diagnostic multidetector CT (MDCT) scanner using a standard head protocol. Images were interpreted by a fellowship-trained neuroradiologist for imaging tasks of ICH detection, gray-white-CSF differentiation, detection of midline shift, and fracture detection. RESULTS: The nominal scan protocol involved 720 projections acquired over a 360° orbit at 100 kV and 216 mAs, giving a dose (weighted CTDI) of 22.8 mGy (∼1.2 mSv effective dose). Out-of-field dose decreased to <10% within 6 cm of the field edge (approximate to the thyroid position). Image uniformity demonstrated <1% variation between the edge of the field (near the cranium) and center of the image. The high-resolution FBP reconstruction protocol showed ∼0.9 mm point spread function (PSF) full-width at half-maximum (FWHM). The smooth PWLS reconstruction protocol yielded ∼1.2 mm PSF FWHM and contrast-to-noise ratio exceeding 5.7 in ∼50 HU spherical ICH, resulting in conspicuous depiction of ICH down to ∼2 mm (the smallest diameter investigated). Cadaver images demonstrated good differentiation of brain and CSF (sufficient, but inferior to MDCT, recognizing that the CBCT dose was one-third that of MDCT), excellent visualization of cranial sutures and fracture (potentially superior to MDCT), clear detection of midline shift, and conspicuous detection of ICH. CONCLUSIONS: Technical assessment of the prototype demonstrates dose characteristics and imaging performance consistent with point-of-care detection and monitoring of head injury-most notably, conspicuous detection of ICH-and supports translation of the system to clinical studies.


Cone-Beam Computed Tomography/methods , Intracranial Hemorrhages/diagnostic imaging , Acute Disease , Humans , Imaging, Three-Dimensional , Point-of-Care Systems , Radiation Dosage , Signal-To-Noise Ratio
17.
Phys Med Biol ; 61(20): 7263-7281, 2016 10 21.
Article En | MEDLINE | ID: mdl-27694701

Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view.


Cone-Beam Computed Tomography/instrumentation , Image Processing, Computer-Assisted/methods , Algorithms , Artifacts , Humans , Knee Joint/diagnostic imaging , Phantoms, Imaging
18.
Phys Med Biol ; 61(16): 5973-92, 2016 08 21.
Article En | MEDLINE | ID: mdl-27435162

The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180° + fan angle) scan centered on the posterior of the head reduced dose to the eye lens by up to 90%. Acquisition in DG mode (without a bowtie filter) was beneficial to the detection of small, low contrast lesions (e.g. subtle ICH) in CBCT. While bowtie filters were found to reduce dose, mitigate sensor saturation at the periphery in HG mode, and improve CNR at the center of the image, the image quality at the periphery was slightly reduced compared to DG mode, and the use of a bowtie required careful implementation of the polyenergetic flood-field correction to avoid artifacts.


Cone-Beam Computed Tomography/instrumentation , Cone-Beam Computed Tomography/methods , Head/diagnostic imaging , Models, Theoretical , Phantoms, Imaging , Humans , Monte Carlo Method , Scattering, Radiation , X-Rays
20.
PLoS One ; 10(3): e0120140, 2015.
Article En | MEDLINE | ID: mdl-25836670

Respiratory gating helps to overcome the problem of breathing motion in cardiothoracic small-animal imaging by acquiring multiple images for each projection angle and then assigning projections to different phases. When this approach is used with a dose similar to that of a static acquisition, a low number of noisy projections are available for the reconstruction of each respiratory phase, thus leading to streak artifacts in the reconstructed images. This problem can be alleviated using a prior image constrained compressed sensing (PICCS) algorithm, which enables accurate reconstruction of highly undersampled data when a prior image is available. We compared variants of the PICCS algorithm with different transforms in the prior penalty function: gradient, unitary, and wavelet transform. In all cases the problem was solved using the Split Bregman approach, which is efficient for convex constrained optimization. The algorithms were evaluated using simulations generated from data previously acquired on a micro-CT scanner following a high-dose protocol (four times the dose of a standard static protocol). The resulting data were used to simulate scenarios with different dose levels and numbers of projections. All compressed sensing methods performed very similarly in terms of noise, spatiotemporal resolution, and streak reduction, and filtered back-projection was greatly improved. Nevertheless, the wavelet domain was found to be less prone to patchy cartoon-like artifacts than the commonly used gradient domain.


Algorithms , Tomography, X-Ray Computed/methods , Animals
...