Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Oncol ; 12: 852859, 2022.
Article En | MEDLINE | ID: mdl-35359406

The tuberous sclerosis complex (TSC) is a rare genetic syndrome and multisystem disease resulting in tumor formation in major organs. A molecular hallmark of TSC is a dysregulation of the mammalian target of rapamycin (mTOR) through loss-of-function mutations in either tumor suppressor TSC1 or TSC2. Here, we sought to identify drug vulnerabilities conferred by TSC2 tumor-suppressor loss through cell-based chemical biology screening. Our small-molecule chemical screens reveal a sensitivity to inhibitors of checkpoint kinase 1/2 (CHK1/2), regulators of cell cycle, and DNA damage response, in both in vitro and in vivo models of TSC2-deficient renal angiomyolipoma (RA) tumors. Further, we performed transcriptional profiling on TSC2-deficient RA cell models and discovered that these recapitulate some of the features from TSC patient kidney tumors compared to normal kidneys. Taken together, our study provides a connection between mTOR-dependent tumor growth and CHK1/2, highlighting the importance of CHK1/2 inhibition as a potential antitumor strategy in TSC2-deficient tumors.

2.
Nat Commun ; 8: 15816, 2017 06 15.
Article En | MEDLINE | ID: mdl-28643795

Tuberous sclerosis complex (TSC) is a rare genetic disease causing multisystem growth of benign tumours and other hamartomatous lesions, which leads to diverse and debilitating clinical symptoms. Patients are born with TSC1 or TSC2 mutations, and somatic inactivation of wild-type alleles drives MTOR activation; however, second hits to TSC1/TSC2 are not always observed. Here, we present the genomic landscape of TSC hamartomas. We determine that TSC lesions contain a low somatic mutational burden relative to carcinomas, a subset feature large-scale chromosomal aberrations, and highly conserved molecular signatures for each type exist. Analysis of the molecular signatures coupled with computational approaches reveals unique aspects of cellular heterogeneity and cell origin. Using immune data sets, we identify significant neuroinflammation in TSC-associated brain tumours. Taken together, this molecular catalogue of TSC serves as a resource into the origin of these hamartomas and provides a framework that unifies genomic and transcriptomic dimensions for complex tumours.


Tuberous Sclerosis/genetics , Tumor Suppressor Proteins/genetics , Carcinoma/genetics , Carcinoma/metabolism , Genomics , Humans , Mutation , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/metabolism
3.
Neurobiol Dis ; 77: 191-203, 2015 May.
Article En | MEDLINE | ID: mdl-25771169

Advanced age is the primary risk factor for Parkinson's disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3months), middle-aged (15months), and aged (22months) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging.


Aging , Corpus Striatum/physiology , Dopaminergic Neurons/physiology , Parkinson Disease/surgery , Recovery of Function/physiology , Stem Cell Transplantation/methods , Amphetamine/pharmacology , Animals , Corpus Striatum/surgery , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Dyskinesia, Drug-Induced/physiopathology , Embryo, Mammalian , Functional Laterality , Levodopa/adverse effects , Neurites/physiology , Oxidopamine/toxicity , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Inbred F344 , Substance P/metabolism
...