Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835328

RESUMEN

ATP-dependent SWI/SNF chromatin remodelling complexes are conserved multi-subunit assemblies that control genome activity. Functions of SWI/SNF complexes in plant development and growth have been well established, but the architecture of particular assemblies is unclear. In this study, we elucidate the organization of Arabidopsis SWI/SNF complexes formed around a BRM catalytic subunit, and define the requirement of bromodomain-containing proteins BRD1/2/13 for the formation and stability of the entire complex. Using affinity purification followed by mass spectrometry, we identify a set of BRM-associated subunits and demonstrate that the BRM complexes strongly resemble mammalian non-canonical BAF complexes. Furthermore, we identify BDH1 and 2 proteins as components of the BRM complex and, using mutant analyses, show that BDH1/2 are important for vegetative and generative development, as well as hormonal responses. We further show that BRD1/2/13 represent unique subunits of the BRM complexes, and their depletion severely affects the integrity of the complex, resulting in the formation of residual assemblies. Finally, analyses of BRM complexes after proteasome inhibition revealed the existence of a module consisting of the ATPase, ARP, and BDH proteins, assembled with other subunits in a BRD-dependent manner. Together, our results suggest modular organization of plant SWI/SNF complexes and provide a biochemical explanation for mutant phenotypes.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo
2.
Plant Commun ; 2(4): 100174, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34327319

RESUMEN

SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the Arabidopsis bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a brd triple mutation (brdx3) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The brdx3 phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of swi/snf mutants. Furthermore, the BRM protein level and occupancy at the direct target loci SCL3, ABI5, and SVP were reduced in the brdx3 mutant background. Finally, a brdx3 brm-3 quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA