Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medchemcomm ; 9(11): 1831-1842, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542533

RESUMEN

Increased expression of the Tribbles pseudokinase 1 gene (TRIB1) is associated with lower plasma levels of LDL cholesterol and triglycerides, higher levels of HDL cholesterol and decreased risk of coronary artery disease and myocardial infarction. We identified a class of tricyclic glycal core-based compounds that upregulate TRIB1 expression in human HepG2 cells and phenocopy the effects of genetic TRIB1 overexpression as they inhibit expression of triglyceride synthesis genes and ApoB secretion in cells. In addition to predicted effects related to downregulation of VLDL assembly and secretion these compounds also have unexpected effects as they upregulate expression of LDLR and stimulate LDL uptake. This activity profile is unique and favorably differs from profiles produced by statins or other lipoprotein targeting therapies. BRD8518, the initial lead compound from the tricyclic glycal class, exhibited stereochemically dependent activity and the potency far exceeding previously described benzofuran BRD0418. Gene expression profiling of cells treated with BRD8518 demonstrated the anticipated changes in lipid metabolic genes and revealed a broad stimulation of early response genes. Consistently, we found that BRD8518 activity is MEK1/2 dependent and the treatment of HepG2 cells with BRD8518 stimulates ERK1/2 phosphorylation. In agreement with down-regulation of genes controlling triglyceride synthesis and assembly of lipoprotein particles, the mass spectrometry analysis of cell extracts showed reduced rate of incorporation of stable isotope labeled glycerol into triglycerides in BRD8518 treated cells. Furthermore, we describe medicinal chemistry efforts that led to identification of BRD8518 analogs with enhanced potency and pharmacokinetic properties suitable for in vivo studies.

2.
Biochemistry ; 56(51): 6639-6651, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29185708

RESUMEN

Beclin-1 (BECN1) is an essential component of macroautophagy. This process is a highly conserved survival mechanism that recycles damaged cellular components or pathogens by encasing them in a bilayer vesicle that fuses with a lysosome to allow degradation of the vesicular contents. Mutations or altered expression profiles of BECN1 have been linked to various cancers and neurodegenerative diseases. Viruses, including HIV and herpes simplex virus 1 (HSV-1), are also known to specifically target BECN1 as a means of evading host defense mechanisms. Autophagy is regulated by the interaction between BECN1 and Bcl-2, a pro-survival protein in the apoptotic pathway that stabilizes the BECN1 homodimer. Disruption of the homodimer by phosphorylation or competitive binding promotes autophagy through an unknown mechanism. We report here the first recombinant synthesis (3-5 mg/L in an Escherichia coli culture) and characterization of full-length, human BECN1. Our analysis reveals that full-length BECN1 exists as a soluble homodimer (KD ∼ 0.45 µM) that interacts with Bcl-2 (KD = 4.3 ± 1.2 µM) and binds to lipid membranes. Dimerization is proposed to be mediated by a coiled-coil region of BECN1. A construct lacking the C-terminal BARA domain but including the coiled-coil region exhibits a homodimer KD 3.5-fold weaker than that of full-length BECN1, indicating that both the BARA domain and the coiled-coil region of BECN1 contribute to dimer formation. Using site-directed mutagenesis, we show that residues at the C-terminus of the coiled-coil region previously shown to interact with the BARA domain play a key role in dimerization and mutations weaken the interface by ∼5-fold.


Asunto(s)
Autofagia , Beclina-1/química , Multimerización de Proteína , Secuencia de Aminoácidos , Beclina-1/biosíntesis , Beclina-1/genética , Escherichia coli , Humanos , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
3.
PLoS One ; 10(3): e0120295, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811180

RESUMEN

Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Análisis por Conglomerados , Perfilación de la Expresión Génica , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteínas LDL/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oncostatina M/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas
4.
Cartilage ; 1(1): 43-54, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26069535

RESUMEN

Insulin-like growth factor binding protein 5 (IGFBP-5) has been proposed to promote cartilage anabolism through insulin-like growth factor (IGF-1) signaling. A proteolytic activity towards IGFBP-5 has been detected in synovial fluids from human osteoarthritic (OA) joints. The purpose of this study was to determine if protease activity towards IGFBP-5 is present in the rat medial meniscal tear (MMT) model of OA and whether inhibition of this activity would alter disease progression. Sprague-Dawley rats were subject to MMT surgery. Synovial fluid lavages were assessed for the presence of IGFBP-5 proteolytic activity. Treatment animals received intra-articular injections of vehicle or protease inhibitor peptide PB-145. Cartilage lesions were monitored by India ink staining followed by macroscopic measurement of lesion width and depth. The MMT surgery induced a proteolytic activity towards IGFPB-5 that was detectable in joint fluid. This activity was stimulated by calcium and was sensitive to serine protease inhibitors as well as peptide PB-145. Significantly, intra-articular administration of PB-145 after surgery protected cartilage from lesion development. PB-145 treatment also resulted in an increase in cartilage turnover as evidenced by increases in serum levels of procollagen type II C-propeptide (CPII) as well as synovial fluid lavage levels of collagen type II neoepitope (TIINE). IGFBP-5 metabolism is disrupted in the rat MMT model of OA, potentially contributing to cartilage degradation. Inhibition of IGFBP-5 proteolysis protected cartilage from lesion development and enhanced cartilage turnover. These data are consistent with IGFBP-5 playing a positive role in anabolic IGF signaling in cartilage.

5.
Arthritis Rheum ; 60(9): 2704-13, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19714641

RESUMEN

OBJECTIVE: Fibronectin fragments are thought to play a critical role in the initiation and progression of cartilage degradation in arthritis. In a recent study, fibronectin neoepitopes resulting from cleavage of intact fibronectin at the Ala(271)/Val(272) scissile bond, generating an approximately 30-kd fragment with the new C-terminus VRAA(271) and an approximately 50-85-kd fragment with the new N-terminus (272)VYQP, were identified in osteoarthritis (OA) cartilage. The present study was undertaken to isolate the enzymes responsible for this cleavage from human OA chondrocytes. METHODS: Fibronectin-degrading activity in human OA chondrocyte-conditioned medium (OACCM) was purified using conventional chromatography. A fluorescent peptide was developed based on the fibronectin scissile bond (269)RAA downward arrowVal(272), and this peptide was used to track fibronectinase activity during purification. Western blotting with antibodies that detect the fibronectin neoepitopes VRAA(271) and (272)VYQP was used to confirm cleavage of intact fibronectin by the enzymatically active fractions. Mass spectrometry was used to identify the proteins found in the fibronectinase-enriched fractions, with further confirmation by Western blotting. In addition, a recombinant enzyme identified by mass spectrometry was tested by Western blotting and dimethylmethylene blue assay for its ability to produce fibronectin neoepitopes in OA cartilage. RESULTS: Purification of OACCM by chromatography resulted in isolation of a fibronectin-degrading enzyme, and mass spectrometry identified ADAM-8 as the fibronectinase present in these preparations. Furthermore, treatment of OA cartilage with recombinant human ADAM-8 promoted cartilage catabolism. CONCLUSION: The results of this study identify ADAM-8 as a fibronectinase in human OA chondrocytes. Because ADAM-8 is capable of producing the fibronectin neoepitopes VRAA(271) and (272)VYQP in human OA cartilage, this enzyme may be an important mediator of cartilage catabolism.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas ADAM/farmacología , Alanina/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Fibronectinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Osteoartritis de la Rodilla/metabolismo , Anciano de 80 o más Años , Células Cultivadas , Condrocitos/patología , Medios de Cultivo Condicionados/farmacología , Epítopos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/patología , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA