Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38668191

Photonic neural networks (PNNs), utilizing light-based technologies, show immense potential in artificial intelligence (AI) and computing. Compared to traditional electronic neural networks, they offer faster processing speeds, lower energy usage, and improved parallelism. Leveraging light's properties for information processing could revolutionize diverse applications, including complex calculations and advanced machine learning (ML). Furthermore, these networks could address scalability and efficiency challenges in large-scale AI systems, potentially reshaping the future of computing and AI research. In this comprehensive review, we provide current, cutting-edge insights into diverse types of PNNs crafted for both imaging and computing purposes. Additionally, we delve into the intricate challenges they encounter during implementation, while also illuminating the promising perspectives they introduce to the field.

2.
Sensors (Basel) ; 23(1)2022 Dec 30.
Article En | MEDLINE | ID: mdl-36617009

In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the visible light spectrum. We also describe our training set augmentation and novel quality criteria called "false edge level" (FEL), which validates that the neural network produces visually appealing images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL) enabled us to include real scene images without a corresponding ground truth in the training process.


Lenses , Optics and Photonics , Refraction, Ocular , Light , Image Processing, Computer-Assisted
3.
Opt Express ; 29(20): 31875-31890, 2021 Sep 27.
Article En | MEDLINE | ID: mdl-34615270

Hybrid methods combining the geometrical-optics and diffraction-theory methods enable designing diffractive optical elements (DOEs) with high performance due to the suppression of stray light and speckles and, at the same time, with a regular and fabrication-friendly microrelief. Here, we propose a geometrical-optics method for calculating the eikonal function of the light field providing the generation of a required irradiance distribution. In the method, the problem of calculating the eikonal function is formulated in a semi-discrete form as a problem of maximizing a concave function. For solving the maximization problem, a gradient method is used, with analytical expressions obtained for the gradient. In contrast to geometrical-optics approaches based on solving the Monge-Ampére equation using finite difference methods, the proposed method enables generating irradiance distributions defined on disconnected regions with non-smooth boundaries. As an example, we calculate an eikonal function, which provides the generation of a "discontinuous" irradiance distribution in the form of a hexagram. It is shown that the utilization of the hybrid approach, in which the obtained geometrical-optics solution is used as a starting point in iterative Fourier transform algorithms, enables designing DOEs with a quasi-regular or piecewise-smooth microrelief structure. The calculation results are confirmed by the results of experimental investigations of a DOE generating a hexagram-shaped irradiance distribution.

4.
Opt Express ; 28(8): 11705-11720, 2020 Apr 13.
Article En | MEDLINE | ID: mdl-32403676

We propose a method for designing diffractive lenses having a fixed-position focus at several prescribed wavelengths, which we refer to as spectral diffractive lenses (SDLs). The method is based on minimizing an objective function describing the deviation of the complex transmission functions of the spectral lens at the operating wavelengths from the complex transmission functions of diffractive lenses calculated separately for each of these wavelengths. As examples, SDLs operating at three, five, and seven different wavelengths are designed. The simulation results of the calculated lenses confirm high efficiency of the proposed method. For experimental verification of the design method, we fabricate using direct laser writing and experimentally investigate an SDL operating at five wavelengths. The presented experimental results confirm the efficiency of the proposed method in practical problems of designing SDLs. The obtained results may find applications in the design and fabrication of novel flat diffractive lenses with reduced chromatic effects.

5.
Appl Opt ; 56(11): E8-E15, 2017 Apr 10.
Article En | MEDLINE | ID: mdl-28414336

A theoretical and experimental study of the propagation of vortex laser beams in a random aerosol medium is presented. The theoretical study is based on the extended Huygens-Fresnel principle with the generation of a random field, using the fast Fourier transform. The simulation shows that the stability of vortex beams to fluctuations of an optical medium falls with rising order of optical vortices. Moreover, a coherence length (radius) of the random medium is of great importance. The coherence radius extension affects adversely the conservation of a beam structure in the random medium. During further free-space propagation, increasing coherence enables reduction of the negative effects of fluctuations for beams with high-value topological charges. Experimental studies in the random aerosol medium have shown that at small distances vortex beams mostly demonstrate lower stability than a Gaussian beam. However, at considerable distances, vortex beams start to demonstrate greater stability that may be explained by their capacity to be regenerated after they passed obstacles.

6.
Appl Opt ; 54(18): 5680-5, 2015 Jun 20.
Article En | MEDLINE | ID: mdl-26193014

The intensity distribution on the optical axis of a parabolic binary diffraction lens is theoretically and experimentally studied. The binary diffraction lens is shown to form an array of focal spots of near-equal intensity on the optical axis. In each local focus, the focal-spot size decreases as the square of the focus number until the paraxiality condition is broken. Theory and experiment are shown to be in good agreement.

7.
J Opt Soc Am A Opt Image Sci Vis ; 24(7): 1955-64, 2007 Jul.
Article En | MEDLINE | ID: mdl-17728819

We derive what we believe to be new analytical relations to describe the Fraunhofer diffraction of the finite-radius plane wave by a helical axicon (HA) and a spiral phase plate (SPP). The solutions are deduced in the form of a series of the Bessel functions for the HA and a finite sum of the Bessel functions for the SPP. The solution for the HA changes to that for the SPP if the axicon parameter is set equal to zero. We also derive what we believe to be new analytical relations to describe the Fresnel and Fraunhofer diffraction of the Gaussian beam by a HA are derived. The solutions are deduced in the form of a series of the hypergeometric functions. We have fabricated by photolithography a binary diffractive optical element (a HA with number n=10) able to produce in the focal plane of a spherical lens an optical vortex, which was then used to perform rotation of several polystyrene beads of diameter 5 microm.

8.
Appl Opt ; 45(12): 2656-65, 2006 Apr 20.
Article En | MEDLINE | ID: mdl-16633415

An analytical expression for the spatial spectrum of the conic wave diffracted by a spiral phase plate (SPP) with arbitrary integer singularity of order n is obtained. Conic wave diffraction by the SPP is equivalent to plane-wave diffraction by a helical axicon. A comparison of the conic wave and Gaussian beam diffraction on a SPP is made. It is shown that in both cases a light ring is formed, with the intensity function growing in proportion to rho(2n) at small values of radial variable rho and decreasing as n(2)rho(-4) at large rho. By use of direct e-beam writing on the resist, a 32 level SPP of the 2nd order and diameter 5 mm is manufactured. By use of this SPP, a He-Ne laser beam is transformed into a beam with phase singularity and ringlike intensity distribution. A four-order binary diffractive optical element (DOE) with its transmittance proportional to a linear superposition of four angular harmonics is also manufactured. With this DOE, simultaneous optical trapping of several polystyrene beads of diameter 5 microm is performed.

...