Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 120: 304-314, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852760

RESUMEN

Acamprosate is a Food and Drug Administration (FDA) approved medication for the treatment of alcohol use disorder (AUD). However, only a subset of patients achieves optimal treatment outcomes. Currently, no biological measures are utilized to predict response to acamprosate treatment. We applied our established pharmaco-omics informed genomics strategy to identify potential biomarkers associated with acamprosate treatment response. Specifically, our previous open-label acamprosate clinical trial recruited 442 patients with AUD who were treated with acamprosate for three months. We first performed proteomics using baseline plasma samples to identify potential biomarkers associated with acamprosate treatment outcomes. Next, we applied our established "proteomics-informed genome-wide association study (GWAS)" research strategy, and identified 12 proteins, including interleukin-17 receptor B (IL17RB), associated with acamprosate treatment response.​ A GWAS for IL17RB concentrations identified several genome-wide significant signals. Specifically, the top hit single nucleotide polymorphism (SNP) rs6801605 with a minor allele frequency of 38% in the European American population mapped 4 kilobase (Kb) upstream of IL17RB, and intron 1 of the choline dehydrogenase (CHDH) gene on chromosome 3 (p: 4.8E-20). The variant genotype (AA) for the SNP rs6801605 was associated with lower IL17RB protein expression. In addition, we identified a series of genetic variants in IL17RB that were associated with acamprosate treatment outcomes. Furthermore, the variantgenotypes for all of those IL17RB SNPs were protective for alcohol relapse. Finally, we demonstrated that the basal level of mRNA expression of IL17RB was inversely correlated with those of nuclear factor-κB (NF-κB) subunits, and a significantly higher expression of NF-κB subunits was observed in AUD patients who relapsed to alcohol use. In summary, this study illustrates that IL17RB genetic variants might contribute to acamprosate treatment outcomes. This series of studies represents an important step toward generating functional hypotheses that could be tested to gain insight into mechanisms underlying acamprosate treatment response phenotypes. (The ClinicalTrials.gov Identifier: NCT00662571).

2.
Mol Metab ; 77: 101798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689244

RESUMEN

OBJECTIVE: Fibroblast growth factor 21 (FGF21) analogs have been tested as potential therapeutics for substance use disorders. Prior research suggests that FGF21 administration might affect alcohol consumption and reward behaviors. Our recent report showed that plasma FGF21 levels were positively correlated with alcohol use in patients with alcohol use disorder (AUD). FGF21 has a short half-life (0.5-2 h) and crosses the blood-brain barrier. Therefore, we set out to identify molecular mechanisms for both the naïve form of FGF21 and a long-acting FGF21 molecule (PF-05231023) in induced pluripotent stem cell (iPSC)-derived forebrain neurons. METHODS: We performed RNA-seq in iPSC-derived forebrain neurons treated with naïve FGF21 or PF-05231023 at physiologically relevant concentrations. We obtained plasma levels of FGF21 and GABA from our previous AUD clinical trial (n = 442). We performed ELISA for FGF21 in both iPSC-derived forebrain neurons and forebrain organoids. We determined protein interactions using co-immunoprecipitation. Finally, we applied ChIP assays to confirm the occupancy of REST, EZH2 and H3K27me3 by FGF21 using iPSC-derived forebrain neurons with and without drug exposure. RESULTS: We identified 4701 and 1956 differentially expressed genes in response to naïve FGF21 or PF-05231023, respectively (FDR < 0.05). Notably, 974 differentially expressed genes overlapped between treatment with naïve FGF21 and PF-05231023. REST was the most important upstream regulator of differentially expressed genes. The GABAergic synapse pathway was the most significant pathway identified using the overlapping genes. We also observed a significant positive correlation between plasma FGF21 and GABA concentrations in AUD patients. In parallel, FGF21 and PF-05231023 significantly induced GABA levels in iPSC-derived neurons. Finally, functional genomics studies showed a drug-dependent occupancy of REST, EZH2, and H3K27me3 in the promoter regions of genes involved in GABA catabolism which resulted in transcriptional repression. CONCLUSIONS: Our results highlight a significant role in the epigenetic regulation of genes involved in GABA catabolism related to FGF21 action. (The ClinicalTrials.gov Identifier: NCT00662571).

4.
Drug Alcohol Depend ; 243: 109753, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608483

RESUMEN

Lifetime history of major depressive disorder (MDD) has a sex-specific association with pretreatment alcohol consumption in patients with alcohol dependence. Here, we investigated the association of genetic load for MDD estimated using a polygenic risk score (PRS) with pretreatment alcohol consumption assessed with Timeline Follow Back in a sample of 287 men and 156 women meeting DSM-IV-TR criteria for alcohol dependence. Preferred drinking situations were assessed using the Inventory of Drug Taking Situations (IDTS). Linear models were used to test for association of normalized alcohol consumption measures with the MDD-PRS, adjusting for ancestry, age, sex, and number of days sober at baseline. We fit models both with and without adjustment for MDD history and alcohol-use-related PRSs as covariates. Higher MDD-PRS was associated with lower 90-day total alcohol consumption in men (ß = -0.16, p = 0.0012) but not in women (ß = 0.11, p = 0.18). The association of MDD-PRS with IDTS measures was also sex-specific: higher MDD-PRS was associated with higher propensity to drink in temptation-related situations in women, while the opposite (negative association)was found in men. MDD-PRS was not associated with lifetime MDD history in our sample, and adjustment for lifetime MDD and alcohol-related PRSs did not impact the results. Our results suggest that genetic load for MDD impacts pretreatment alcohol consumption in a sex-specific manner, which is similar to, but independent from, the effect of history of MDD. The clinical implications of these findings and contributing biological and psychological factors should be investigated in future studies.


Asunto(s)
Alcoholismo , Trastorno Depresivo Mayor , Masculino , Humanos , Femenino , Alcoholismo/epidemiología , Alcoholismo/genética , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/psicología , Predisposición Genética a la Enfermedad , Consumo de Bebidas Alcohólicas/genética , Factores de Riesgo , Herencia Multifactorial , Estudio de Asociación del Genoma Completo
5.
Mol Psychiatry ; 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302966

RESUMEN

The opioid epidemic represents a national crisis. Oxycodone is one of the most prescribed opioid medications in the United States, whereas buprenorphine is currently the most prescribed medication for opioid use disorder (OUD) pharmacotherapy. Given the extensive use of prescription opioids and the global opioid epidemic, it is essential to understand how opioids modulate brain cell type function at the single-cell level. We performed single nucleus RNA-seq (snRNA-seq) using iPSC-derived forebrain organoids from three male OUD subjects in response to oxycodone, buprenorphine, or vehicle for seven days. We utilized the snRNA-seq data to identify differentially expressed genes following drug treatment using the Seurat integrative analysis pipeline. We utilized iPSC-derived forebrain organoids and single-cell sequencing technology as an unbiased tool to study cell-type-specific and drug-specific transcriptional responses. After quality control filtering, we analyzed 25787 cells and identified sixteen clusters using unsupervised clustering analysis. Our results reveal distinct transcriptional responses to oxycodone and buprenorphine by iPSC-derived brain organoids from patients with OUD. Specifically, buprenorphine displayed a significant influence on transcription regulation in glial cells. However, oxycodone induced type I interferon signaling in many cell types, including neural cells in brain organoids. Finally, we demonstrate that oxycodone, but not buprenorphine activated STAT1 and induced the type I interferon signaling in patients with OUD. These data suggest that elevation of STAT1 expression associated with OUD might play a role in transcriptional regulation in response to oxycodone. In summary, our results provide novel mechanistic insight into drug action at single-cell resolution.

6.
Front Pharmacol ; 13: 986238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120372

RESUMEN

Acamprosate is an anti-craving drug used in alcohol use disorder (AUD) pharmacotherapy. However, only a subset of patients achieves optimal treatment outcomes. The identification of predictive biomarkers of acamprosate treatment response in patients with AUD would be a substantial advance in addiction medicine. We designed this study to use proteomics data as a quantitative biological trait as a step toward identifying inflammatory modulators that might be associated with acamprosate treatment outcomes. The NIAAA-funded Mayo Clinic Center for the Individualized Treatment of Alcoholism study had previously recruited 442 AUD patients who received 3 months of acamprosate treatment. However, only 267 subjects returned for the 3-month follow-up visit and, as a result, had treatment outcome information available. Baseline alcohol craving intensity was the most significant predictor of acamprosate treatment outcomes. We performed plasma proteomics using the Olink target 96 inflammation panel and identified that baseline plasma TNF superfamily member 10 (TNFSF10) concentration was associated with alcohol craving intensity and variation in acamprosate treatment outcomes among AUD patients. We also performed RNA sequencing using baseline peripheral blood mononuclear cells from AUD patients with known acamprosate treatment outcomes which revealed that inflammation-related pathways were highly associated with relapse to alcohol use during the 3 months of acamprosate treatment. These observations represent an important step toward advancing our understanding of the pathophysiology of AUD and molecular mechanisms associated with acamprosate treatment response. In conclusion, applying omics-based approaches may be a practical approach for identifying biologic markers that could potentially predict alcohol craving intensity and acamprosate treatment response.

7.
Mol Metab ; 63: 101534, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35752286

RESUMEN

OBJECTIVE: Alcohol consumption can increase circulating levels of fibroblast growth factor 21 (FGF21). The effects of FGF21 in the central nervous system are associated with the regulation of catecholamines, neurotransmitters that play a crucial role in reward pathways. This study aims to identify genetic variants associated with FGF21 levels and evaluate their functional role in alcohol use disorder (AUD). METHODS: We performed a genome-wide association study (GWAS) using DNA samples from 442 AUD subjects recruited from the Mayo Clinic Center for the Individualized Treatment of Alcoholism Study. Plasma FGF21 levels were measured using Olink proximity extension immunoassays. Alcohol consumption at time of entry into the study was measured using the self-reported timeline followback method. Functional genomic studies were performed using HepG2 cells and induced pluripotent stem cell (iPSC)-derived brain organoids. RESULTS: Plasma FGF21 levels were positively correlated with recent alcohol consumption and gamma-glutamyl transferase levels, a commonly used marker for heavy alcohol use. One variant, rs9914222, located 5' of SNHG16 on chromosome 17 was associated with plasma FGF21 levels (p = 4.60E-09). This variant was also associated with AUD risk (ß: -3.23; p:0.0004). The rs9914222 SNP is an eQTL for SNHG16 in several brain regions, i.e., the variant genotype was associated with decreased expression of SNHG16. The variant genotype for the rs9914222 SNP was also associated with higher plasma FGF21 levels. Knockdown of SNHG16 in HepG2 cells resulted in increased FGF21 concentrations and decreased expression and enzyme activity for COMT, an enzyme that plays a key role in catecholamine metabolism. Finally, we demonstrated that ethanol significantly induced FGF21, dopamine, norepinephrine, and epinephrine concentrations in iPSC-derived brain organoids. CONCLUSIONS: GWAS for FGF21 revealed a SNHG16 genetic variant associated with FGF21 levels which are associated with recent alcohol consumption. Our data suggest that SNHG16 can regulate FGF21 concentrations and decrease COMT expression and enzyme activity which, in turn, have implications for the regulation of catecholamines. (The ClinicalTrials.gov Identifier: NCT00662571).


Asunto(s)
Alcoholismo , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas , Alcoholismo/genética , Catecolaminas , Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...