Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(7): e0200530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30063742

RESUMEN

In 2006, six isolated hominin teeth were excavated from Middle Stone Age (MSA) deposits at the Magubike rockshelter in southern Tanzania. They comprise two central incisors, one lateral incisor, one canine, one third premolar, and one fourth premolar. All are fully developed and come from the maxilla. None of the teeth are duplicated, so they may represent a single individual. While there is some evidence of post-depositional alteration, the morphology of these teeth clearly shares features with anatomically modern Homo sapiens. Both metric and non-metric traits are compared to those from other African and non-African dental remains. The degree of biological relatedness between eastern and southern African Stone Age hunter-gatherers has long been a subject of interest, and several characteristics of the Magubike teeth resemble those of the San of southern Africa. Another notable feature is that the three incisors are marked on the labial crown by scratches that are much coarser than microwear striations. These non-masticatory scratches on the Magubike teeth suggest that the use of the front teeth as tools included regularly repeated activities undertaken throughout the life of the individual. The exact age of these teeth is not clear as ESR and radiocarbon dates on associated snail shells give varying results, but a conservative estimate of their minimum age is 45,000 years.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Diente/fisiología , Animales , Arqueología , Artefactos , Diente Premolar , Esmalte Dental/metabolismo , Dentina/química , Geografía , Historia Antigua , Humanos , Incisivo/anatomía & histología , Mamíferos , Maxilar/anatomía & histología , Struthioniformes , Tanzanía , Corona del Diente/anatomía & histología , Uranio/química
2.
Radiat Prot Dosimetry ; 172(1-3): 283-295, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27683396

RESUMEN

During the Sangamon Episode, North America occasionally experienced warm climates. At Hopwood Farm, IL, a small kettle lake filled with sediment after the Illinois Episode glaciers retreated from southern Illinois. To date those deposits, 14 mollusc samples newly collected with associated sediment from three depths at Hopwood Farm were dated by standard electron spin resonance (ESR) dating. ESR can date molluscs from ~0.5 ka to >2 Ma in age with 5-10% precision, by comparing the accumulated radiation dose with the total radiation dose rate from the mollusc and its environment. Because all molluscs contained ≤0.6 ppm U, their ages do not depend on the assumed U uptake model. Using five different species, ESR analyses for 14 mollusc subsamples from Hopwood Farm showed that Unit 3, a layer rich in lacustrine molluscs, dates at 102 ± 7 ka to 90 ± 6 ka, which correlates with Marine (Oxygen) Isotope Stage 5c-b. Thus, the period with the highest non-arboreal pollen at Hopwood also correlates with the European Brørup, Dansgaard-Oeschger Event DO 23, a time period when climates were cooling and drying somewhat over the same period.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Cubierta de Hielo/química , Moluscos/química , Datación Radiométrica/métodos , Animales , Bioensayo/métodos , Illinois , Moluscos/clasificación , Moluscos/efectos de la radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie
3.
J Hum Evol ; 77: 187-95, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25456825

RESUMEN

Excavation of Toca do Serrote das Moendas, in Piauí state, Brazil revealed a great quantity of fossil wild fauna associated with human remains. In particular, fossils of a cervid (Blastocerus dichotomus) were found, an animal frequently pictured in ancient rock wall paintings. In a well-defined stratum, two loose teeth of this species were found in close proximity to human bones. The teeth were independently dated by electron spin resonance (ESR) in two laboratories. The ages obtained for the teeth were 29 ± 3 ka (thousands of years) and 24 ± 1 ka. The concretion layer capping this stratum was dated by optically stimulated luminescence (OSL) of the quartz grains to 21 ± 3 ka. As these values were derived independently in three different laboratories, using different methods and equipment, these results are compelling evidence of early habitation in this area.


Asunto(s)
Cuevas , Fósiles , Datación Radiométrica/métodos , Diente/química , Brasil , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Paleontología
4.
Radiat Prot Dosimetry ; 159(1-4): 220-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24943512

RESUMEN

Near Hatay, the Antakya-Samandag-Cyprus Fault (ASCF), East Anatolian and Dead Sea Fault Zones, the large faults that form the edges of the African, Anatolian, Cyprus and Arabian Plates, all produce large earthquakes, which have decimated Hatay repeatedly. Near Samandag, Hatay, differential vertical displacement on the ASCF has uplifted the southeastern side relative to northwestern side, producing large fault scarps that parallel the Asi (Orontes) River. Tectonic uplift coupled with Quaternary sealevel fluctuations has produced several stacked marine terraces stranded above current sealevel. This study dated 24 mollusc samples from 10 outcrops on six marine terraces near Samandag electron spin resonance (ESR). Ages were calculated using time-averaged and volumetrically averaged external dose rates, modelled by assuming typical water depths for the individual species and sediment thicknesses estimated from geological criteria. Uplift rates were then calculated for each fault block. At all the Magaracik terraces, the dates suggest that many shells were likely reworked. On the 30 m terrace at Magaracik IV (UTM 766588-3999880), Lithophagus burrows with in situ shells cross the unconformity. One such shell dated to 62 ± 6 ka, setting the minimum possible age for the terrace. For all the Magaracik terraces at ∼30 m above mean sealevel (amsl), the youngest ages for the reworked shells, which averaged 60 ± 3 ka for six separate analyses, sets the maximum possible age for this unit. Thus, the terrace must date to 60-62 ± 3 ka, at the MIS 3/4 boundary when temperatures and sealevels were fluctuating rapidly. Older units dating to MIS 7, 6, and 5 likely were being eroded to supply some fossils found in this terrace. At Magaracik Dump (UTM 765391-4001048), ∼103 m amsl, Ostrea and other shells were found cemented in growth position to the limestone boulders outcropping there <2.0 m above a wave-eroded notch. If the oysters grew at the same time as the wave-cut notch and the related terrace, the date, 91 ± 13 ka, for the oysters, this fault block has been uplifted at 1.19 ± 0.15 m ky(-1), since MIS 5c. At Samandag Kurt Stream at 38 m amsl, molluscs were deposited fine sandy gravel, which was likely formed in a large tidal channel. Four molluscs averaged 116 ± 5 ka. If these molluscs have not been reworked, this fault block has uplifted at 0.34 ± 0.05 m ky(-1) since the MIS 5d/5e boundary. The differences in these uplift rates suggests that at least one, and possibly two, hitherto undiscovered faults may separate the Magaracik Dump site from the other Magaracik sites and from the Samandag Kurt Stream site.


Asunto(s)
Evolución Biológica , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ambiente , Fósiles , Sedimentos Geológicos/química , Paleontología , Datación Radiométrica/métodos , Animales , Dosis de Radiación , Turquía
5.
Health Phys ; 98(2): 417-26, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20065715

RESUMEN

Barnacles have never been successfully dated by electron spin resonance (ESR). Living mainly in the intertidal zone, barnacles die when sea level changes cause their permanent exposure. Thus, dating the barnacles dates past sea level changes. From this, we can measure apparent sea level changes that occur due to ocean volume changes, crustal isostasy, and tectonics. ESR can date aragonitic mollusc shells ranging in age from 5 ka to at least 500 ka. By modifying the standard ESR method for molluscs to chemically dissolve 20 microm from off the shells, six barnacle samples from Norridgewock, Maine, and Khyex River, British Columbia, were tested for suitability for ESR dating. Due to Mn2+ interference peaks, the four Maine barnacle samples were not datable by ESR. Two barnacles from BC, which lacked Mn2+ interference, yielded a mean ESR age of 15.1 +/- 1.0 ka. These ages agree well with 14C dates on the barnacles themselves and wood in the overlying glaciomarine sediment. Although stability tests to calculate the mean dating signal lifetime and more ESR calibration tests against other barnacles of known age are needed to ensure the method's accuracy, ESR can indeed date Balanus, and thus, sea level changes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Datación Radiométrica/métodos , Thoracica/química , Thoracica/clasificación , Animales , Colombia Británica , Proteínas de Caenorhabditis elegans , Océanos y Mares
6.
Appl Radiat Isot ; 62(2): 237-45, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15607455

RESUMEN

At 1510 m asl, Treugol'naya Cave, Russia, is the highest cave showing evidence for human occupation in eastern Europe. Layers 4-7 in the 4.5-m-thick sequence yielded many artifacts representing Lower Paleolithic pebble and flake tool industries. Abundant faunal remains include extinct Middle Pleistocene species. Palynological, paleomagnetic, and microsedimentological analyses indicate that several climatic changes of different magnitudes occurred in the sequence. To determine absolute ages for Treugol'naya, 32 independent subsamples from nine ungulate teeth collected from the Lower Paleolithic layers were dated by standard and isochron electron spin resonance (ESR) analyses. Isochron analyses indicate that the teeth experienced no significant U leaching or secondary uptake, and that linear uptake (LU) provides accurate ages. Layers 4b through 5b dated to 365+/-12-406+/-15 ka. Therefore, hominids visited the site periodically throughout Oxygen Isotope Stage (OIS) 11, indicating that they utilized resources at elevations >1000 m at least seasonally by 400 ka. ESR, paleomagnetic, palynological and paleontological analyses all indicate that the Lower Paleolithic Layers 4-5 correlate with OIS 11. The thickness of Layers 4-5 (more than 1.5 m) makes this one of the thickest OIS 11 terrestrial deposits known.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...