Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Biochem J ; 477(22): 4349-4365, 2020 11 27.
Article En | MEDLINE | ID: mdl-33094801

The membrane-associated prostasin and matriptase belonging to the S1A subfamily of serine proteases, are critical for epithelial development and maintenance. The two proteases are involved in the activation of each other and are both regulated by the protease inhibitors, HAI-1 and HAI-2. The S1A subfamily of serine proteases are generally produced as inactive zymogens requiring a cleavage event to obtain activity. However, contrary to the common case, the zymogen form of matriptase exhibits proteolytic activity, which can be inhibited by HAI-1 and HAI-2, as for the activated counterpart. We provide strong evidence that also prostasin exhibits proteolytic activity in its zymogen form. Furthermore, we show that the activity of zymogen prostasin can be inhibited by HAI-1 and HAI-2. We report that zymogen prostasin is capable of activating zymogen matriptase, but unable to activate its own zymogen form. We propose the existence of an unusual enzyme-enzyme relationship consisting of proteolytically active zymogen forms of both matriptase and prostasin, kept under control by HAI-1 and HAI-2, and located at the pinnacle of an important proteolytic pathway in epithelia. Perturbed balance in this proteolytic system is likely to cause rapid and efficient activation of matriptase by the dual action of zymogen matriptase and zymogen prostasin. Previous studies suggest that the zymogen form of matriptase performs the normal proteolytic functions of the protease, whereas excess matriptase activation likely causes carcinogenesis. HAI-1 and HAI-2 are thus important for the prevention of matriptase activation whether catalysed by zymogen/activated prostasin (this study) or zymogen/activated matriptase (previous studies).


Enzyme Precursors/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Enzyme Precursors/genetics , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Proteinase Inhibitory Proteins, Secretory/genetics , Proteinase Inhibitory Proteins, Secretory/metabolism , Serine Endopeptidases/genetics
2.
Biochem J ; 477(9): 1779-1794, 2020 05 15.
Article En | MEDLINE | ID: mdl-32338287

The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.


Proteinase Inhibitory Proteins, Secretory/metabolism , Serine Endopeptidases/metabolism , Cell Membrane/metabolism , HEK293 Cells , Humans , Membrane Glycoproteins/metabolism , Secretory Pathway
3.
Hum Mol Genet ; 28(5): 828-841, 2019 03 01.
Article En | MEDLINE | ID: mdl-30445423

The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.


Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Diarrhea/congenital , Gene Expression Regulation , Membrane Glycoproteins/genetics , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Mutation, Missense , Serine Endopeptidases/metabolism , Adolescent , Amino Acid Sequence , Child , Child, Preschool , Diarrhea/genetics , Diarrhea/metabolism , Disease Susceptibility , Female , Genetic Association Studies , Humans , Infant , Male , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Models, Biological , Models, Molecular , Phenotype , Structure-Activity Relationship
4.
J Biol Chem ; 294(1): 314-326, 2019 01 04.
Article En | MEDLINE | ID: mdl-30409910

Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its in vivo functions, which include activating several proteolytic and signaling cascades. Inhibition of zymogen matriptase may therefore be a highly effective approach for limiting matriptase activity. To this end, here we sought to characterize the catalytic activity of human zymogen matriptase and to develop mAb inhibitors against this enzyme form. Using a mutated variant of matriptase in which the serine protease domain is locked in the zymogen conformation, we confirmed that the zymogen form of human matriptase has catalytic activity. Moreover, the crystal structure of the catalytic domain of zymogen matriptase was solved to 2.5 Å resolution to characterize specific antibody-based matriptase inhibitors and to further structure-based studies. Finally, we describe the first antibody-based competitive inhibitors that target both the zymogen and activated forms of matriptase. We propose that these antibodies provide a more efficient way to regulate matriptase activity by targeting the protease both before and after its activation and may be of value for both research and preclinical applications.


Antibodies, Monoclonal/chemistry , Enzyme Precursors/chemistry , Protease Inhibitors/chemistry , Proteolysis , Serine Endopeptidases/chemistry , Crystallography, X-Ray , Enzyme Precursors/antagonists & inhibitors , HEK293 Cells , Humans , Protein Domains
5.
Traffic ; 18(6): 378-391, 2017 06.
Article En | MEDLINE | ID: mdl-28371047

It has recently been shown that hepatocyte growth factor activator inhibitor-2 (HAI-2) is able to suppress carcinogenesis induced by overexpression of matriptase, as well as cause regression of individual established tumors in a mouse model system. However, the role of HAI-2 is poorly understood. In this study, we describe 3 mutations in the binding loop of the HAI-2 Kunitz domain 1 (K42N, C47F and R48L) that cause a delay in the SEA domain cleavage of matriptase, leading to accumulation of non-SEA domain cleaved matriptase in the endoplasmic reticulum (ER). We suggest that, like other known SEA domains, the matriptase SEA domain auto-cleaves and reflects that correct oligomerization, maturation, and/or folding has been obtained. Our results suggest that the HAI-2 Kunitz domain 1 mutants influence the flux of matriptase to the plasma membrane by affecting the oligomerization, maturation and/or folding of matriptase, and as a result the SEA domain cleavage of matriptase. Two of the HAI-2 Kunitz domain 1 mutants investigated (C47F, R48L and C47F/R48L) also displayed a reduced ability to proteolytically silence matriptase. Hence, HAI-2 separately stabilizes matriptase, regulates the secretory transport, possibly via maturation/oligomerization and inhibits the proteolytic activity of matriptase in the ER, and possible throughout the secretory pathway.


Endoplasmic Reticulum/metabolism , Membrane Glycoproteins/metabolism , Serine Endopeptidases/metabolism , Biological Transport/physiology , Cell Membrane/metabolism , Cells, Cultured , Humans , Membrane Glycoproteins/genetics , Protein Domains , Proteolysis
6.
Biol Cell ; 109(2): 94-112, 2017 Feb.
Article En | MEDLINE | ID: mdl-27673746

BACKGROUND INFORMATION: Interferons are a family of cytokines with growth inhibitory and antiviral functions, which exert their biological actions through the expression of interferon-stimulated genes (ISGs). The human ISG12 family of proteins comprises ISG12A, ISG12B, ISG12C and ISG6-16. Due to differential splicing and a gene variation, the human ISG12A protein exists as a full-length ISG12A form and three ISG12A variants. ISG12 genes have been found transcriptionally dysregulated in many disorders. High levels of ISG12A mRNA have been found in breast and ovarian cancers. Loss of heterozygosity at the position of the ISG12 genes often occurs in ovarian carcinomas and lymphoblastic leukemias. Both ISG12A and ISG6-16 are up-regulated in psoriasis. RESULTS: We demonstrate here that expression of the human full-length ISG12A protein sensitises cells for TNFα and the BH3 mimetic gossypol induced apoptosis, and the other ISG12A variants as well as ISG12B and ISG12C can induce apoptosis directly in HEK293 cells. Also ISG6-16 sensitises HEK293 cells for gossypol-induced apoptosis. In the ISG12 motif, two putative Bcl-2 homology (BH)3 like motifs were found, which may be decisive for the apoptotic properties of the ISG12 proteins. A series of BH3 mutants was made in ISG12AΔ-S, the smallest apoptosis-inducing ISG12A variant and our results indicate that ISG12AΔ-S indeed possesses features resembling those of BH3-only proteins. Supporting this notion are our findings that the full-length ISG12A co-immunoprecipitates with the Bcl-2 protein, and the apoptotic properties of the ISG12A variants are reduced in Bcl-2 expressing HEK293 cells. In addition, full-length ISG12A is able to form homodimers, which suggests a possible involvement in pore formation during apoptosis. The full-length ISG12A, the three ISG12A variants and the ISG12B proteins were found to be localised in the mitochondria. CONCLUSIONS: Our results suggest that the ISG12 family of proteins has an important role for the apoptotic properties induced by type 1 interferon. SIGNIFICANCE: The ISG12 family constitute small hydrophic proteins involved in apoptosis. This is the first comparison of the apoptotic potentials of the full-length ISG12A protein and the three ISG12A variants. The differential apoptotic potentials of these proteins might have an impact on the strategies to monitor and interpret their dysregulation associated with many disorders.


Apoptosis , Membrane Proteins/physiology , Amino Acid Sequence , Conserved Sequence , Gossypol/pharmacology , HEK293 Cells , HeLa Cells , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mutation, Missense , Protein Binding , Protein Isoforms/physiology , Protein Transport , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Necrosis Factor-alpha/pharmacology
7.
Cell Signal ; 27(7): 1356-68, 2015 Jul.
Article En | MEDLINE | ID: mdl-25841994

The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.


Folate Receptor 1/metabolism , Folic Acid/pharmacology , STAT3 Transcription Factor/metabolism , Transcriptional Activation/drug effects , Cell Proliferation/drug effects , Cyclin A2/genetics , Cyclin A2/metabolism , Folate Receptor 1/antagonists & inhibitors , Folate Receptor 1/genetics , HEK293 Cells , HeLa Cells , Humans , Interleukin-6/pharmacology , Janus Kinases/metabolism , Leucovorin/pharmacology , Phosphorylation/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
...