Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 13(1): 275, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543592

RESUMEN

Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.


Asunto(s)
Antioxidantes , Esquizofrenia , Ratones , Animales , NAD/metabolismo , Esquizofrenia/metabolismo , Oxidación-Reducción , Metabolismo Energético , Modelos Animales de Enfermedad
2.
Sci Rep ; 10(1): 15623, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973277

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is an important cofactor of energy-producing pathways. The redox ratio (NAD+/NADH) reflects the cellular oxidoreductive state. Oxidative stress and redox dysregulation have been suggested to contribute to various neurological diseases. The assessment of NAD content has been recently demonstrated in large animals and human brains by 31P magnetic resonance spectroscopy. However, its measurement in small rodents has never been attempted. The purpose of this study was to investigate, in vivo, the NAD content during mouse brain neurodevelopment. 31P-MR-spectra were acquired in the mouse brain at postnatal days P20, P40, P90 and P250 at 14.1 T using a 3D-localization sequence. High spectral quality was achieved at 14.1 T. NAD+ and NADH were quantified with mean Cramér-Rao lower bound of 10% and 14%, respectively. An increase in NAD+/NADH was observed from P20 to P250 due to a decrease in [NADH]. The intracellular pH was significantly reduced with age, while the free [Mg2+] in the brain was significantly increased. This study demonstrates for the first time the feasibility of the measurement of NAD content in vivo in mouse brains during development, which opens the prospect of longitudinally studying energy metabolism and redox dysfunction in mouse models of brain pathology.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético , NAD/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Animales , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo , Fantasmas de Imagen , Espectroscopía de Protones por Resonancia Magnética/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA