Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14204, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648704

RESUMEN

Space travel requires high-powered, efficient rocket propulsion systems for controllable launch vehicles and safe planetary entry. Interplanetary travel will rely on energy-dense propellants to produce thrust via combustion as the heat generation process to convert chemical to thermal energy. In propulsion devices, combustion can occur through deflagration or detonation, each having vastly different characteristics. Deflagration is subsonic burning at effectively constant pressure and is the main means of thermal energy generation in modern rockets. Alternatively, detonation is a supersonic combustion-driven shock offering several advantages. Detonations entail compact heat release zones at elevated local pressure and temperature. Specifically, rotating detonation rocket engines (RDREs) use detonation as the primary means of energy conversion, producing more useful available work compared to equivalent deflagration-based devices; detonation-based combustion is poised to radically improve rocket performance compared to today's constant pressure engines, producing up to 10[Formula: see text] increased thrust. This new propulsion cycle will also reduce thruster size and/or weight, lower injection pressures, and are less susceptible to engine-damaging acoustic instabilities. Here we present a collective effort to benchmark performance and standardize operability of rotating detonation rocket engines to develop the RDRE technology readiness level towards a flight demonstration. Key detonation physics unique to RDREs, driving consistency and control of chamber dynamics across the engine operating envelope, are identified and addressed to drive down the variability and stochasticity observed in previous studies. This effort demonstrates an RDRE operating consistently across multiple facilities, validating this technology's performance as the foundation of RDRE architecture for future aerospace applications.

2.
Opt Lett ; 48(8): 2010-2013, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058629

RESUMEN

An electro-optical shutter (EOS), comprising a Pockels cell located between crossed-axis polarizers, is integrated into a nanosecond coherent anti-Stokes Raman scattering (CARS) system. The use of the EOS enables thermometry measurements in high-luminosity flames through significant reduction of the background resulting from broadband flame emission. A temporal gating ≤100 ns along with an extinction ratio >10,000:1 are achieved using the EOS. Integration of the EOS enables the use of an unintensified CCD camera for signal detection, improving upon the signal-to-noise ratio achievable with inherently noisy microchannel plate intensification processes previously employed for short temporal gating. The reduction in background luminescence afforded by the EOS in these measurements allows the camera sensor to capture CARS spectra at a broad range of signal intensities and corresponding temperatures, without saturation of the sensor, thus enhancing the dynamic range of these measurements.

3.
Rev Sci Instrum ; 85(3): 035105, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689618

RESUMEN

This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA