Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Diagnostics (Basel) ; 14(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732329

A retrospective study at the 4th Military Clinical Hospital in Wroclaw, Poland, assessed PCR testing alongside blood cultures to guide antimicrobial therapy decisions in hospitalized patients, to determine how much time the results of the molecular tests preceded conventional methods. Among 118 patients, Staphylococcus aureus (37%) and Escherichia coli (21%) were the most common bloodstream infection agents. Blood cultures utilized the BacT/ALERT 3D system, and molecular diagnostics were conducted using the FilmArray platform with the BIOFIRE BCID2 panel. Methicillin susceptibility was observed in 66% of S. aureus strains, while 26% of Gram-negative bacilli exhibited an ESBL phenotype. Therapeutic decisions based on molecular test results were often incorrect for S. aureus infections, particularly MSSA (64.5%), but generally accurate for Gram-negative bacilli. The median times from positive blood culture to BCID2 and pathogen identification/susceptibility were 10 h and 52 h, respectively. Molecular diagnostics facilitated faster initiation of appropriate antibiotic therapy, highlighting the need to educate medical staff on proper interpretation. Consulting within an antimicrobial stewardship program (ASP) could enhance the benefits of implementing molecular methods in bloodstream infection diagnostics.

2.
Front Cell Infect Microbiol ; 14: 1297312, 2024.
Article En | MEDLINE | ID: mdl-38690325

Background: During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods: The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results: Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion: In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.


COVID-19 , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , SARS-CoV-2 , beta-Lactamases , Humans , COVID-19/mortality , COVID-19/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Male , Female , Klebsiella Infections/mortality , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Middle Aged , Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Aged, 80 and over
3.
Front Microbiol ; 15: 1331628, 2024.
Article En | MEDLINE | ID: mdl-38646622

Background: Due to the growing resistance to routinely used antibiotics, the search for new antibiotics or their combinations with effective inhibitors against multidrug-resistant microorganisms is ongoing. In our study, we assessed the in vitro drug susceptibility of Klebsiella pneumoniae strains producing New Delhi metallo-ß-lactamases (NDM) to antibiotics included in the Infectious Diseases Society of America (IDSA) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recommendations. Methods: A total of 60 strains of NDM-producing K. pneumoniae were obtained from different patients hospitalized at the 4th Military Hospital in Wroclaw between 2019 and 2022 and subjected to drug susceptibility to selected antibiotics, including the effects of drug combinations. Results: Among the tested antibiotics, the highest sensitivity (100%) was observed for cefiderocol, eravacycline (interpreted according to the European Committee on Antimicrobial Susceptibility Testing [EUCAST]), and tigecycline. Sensitivity to intravenous fosfomycin varied depending on the method used. Using the "strip stacking" method, determining cumulative sensitivity to ceftazidime/avibactam and aztreonam demonstrated 100% in vitro sensitivity to this combination among the tested strains. Conclusion: The in vitro susceptibility assessment demonstrated that, the best therapeutic option for treating infections caused by carbapenemase-producing strains seems to be a combination of ceftazidime/avibactam with aztreonam. Due to the safety of using both drugs, cost effectiveness, and the broadest indications for use among the tested antibiotics, this therapy should be the first-line treatment for carbapenemase-producing Enterobacterales infections. Nevertheless, a comprehensive evaluation of the efficacy of treating infections caused by NDM-producing K. pneumoniae strains should include not only in vitro susceptibility assessment but also an analysis of clinical cases.

4.
Int J Med Sci ; 21(3): 530-539, 2024.
Article En | MEDLINE | ID: mdl-38250609

Background: Intensive care unit (ICU) patients are at high risk of infection due to multiple invasive procedures, malnutrition, or immunosuppression. The rapid increase in infections with multidrug-resistant organisms (MDRO) during the COVID-19 pandemic caused a dilemma, as the rules of the sanitary regime in ICU rooms were strictly adhered to in the prevailing epidemiological situation. The combat to reduce the number of infections and pathogen transmission became a priority for ICU staff. This study aimed to assess whether eliminating environmental reservoirs and implementing improved procedures for patient care and decontamination and washing equipment in the ICU reduced the incidence of infections caused by MDR strains. Material and methods: The study retrospectively analyzed data in the ICU during the COVID-19 pandemic. The samples were collected based on microbiological culture and medical records in the newly opened ICU (10 stations) and hospital wards where COVID-19 patients were hospitalized. Environmental inoculations were performed during the COVID-19 pandemic every 4-6 weeks unless an increase in the incidence of infections caused by MDR strains was observed. Through microbiological analysis, environmental reservoirs of MDR pathogens were identified. The observation time was divided into two periods, before and after the revised procedures. The relationship between isolated strains of Klebsiella pneumoniae NDM from patients and potential reservoirs within the ICU using ERIC-PCR and dice methods was analyzed. Results: An increased frequency of infections and colonization caused by MDRO was observed compared to the preceding years. A total of 23,167 microbiological tests and 6,985 screening tests for CPE and MRSA bacilli were collected. The pathogen spread was analyzed, and the findings indicated procedural errors. Assuming that the transmission of infections through the staff hands was significantly limited by the restrictive use of personal protective equipment, the search for a reservoir of microorganisms in the environment began. MDR strains were grown from the inoculations collected from the hand-wash basins in the wards and from inside the air conditioner on the ceiling outside the patient rooms. New types of decontamination mats were used in high-risk areas with a disinfectant based on Glucoprotamine. Active chlorine-containing substances were widely used to clean and disinfect surfaces. Conclusions: Infections with MDR strains pose a challenge for health care. Identification of bacterial reservoirs and comprehensive nursing care significantly reduce the number of nosocomial infections.


COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Drug Resistance, Multiple, Bacterial , Pandemics/prevention & control , Retrospective Studies , Intensive Care Units
5.
J Clin Med ; 12(18)2023 Sep 13.
Article En | MEDLINE | ID: mdl-37762882

Bloodstream infections (BSIs) are associated with high mortality and inappropriate or delayed antimicrobial therapy. The purpose of this study was to investigate the impact of the COVID-19 pandemic on the epidemiology of BSIs in hospitalized patients. The research aimed to compare the incidence of BSIs and blood culture results in patients hospitalized before and during the COVID-19 pandemic. METHODS: Retrospective and prospective data were collected from blood cultures obtained from 4289 patients hospitalized between June 2018 and July 2022. Two groups of patients were distinguished: those with BSIs admitted during the pre-COVID-19 period and those admitted during the COVID-19 surge. Demographic and clinical data, blood cytology, and biochemistry results were analyzed, and the usefulness of PCT was assessed in patients with COVID-19. RESULTS: The study showed a significant increase in the incidence of BSIs during the pandemic compared to the pre-COVID-19 period. Positive blood cultures were obtained in 20% of patients hospitalized during the pandemic (vs. 16% in the pre-COVID-19 period). The incidence of BSIs increased from 1.13 to 2.05 cases per 1000 patient days during COVID-19, and blood culture contamination was more frequently observed. The mortality rate was higher for patients hospitalized during the COVID-19 pandemic. An increased frequency of MDRO isolation was observed in the COVID-19 period. CONCLUSIONS: The incidence of BSIs increased and the mortality rate was higher in the COVID-19 period compared to the pre-COVID-19 period. The study showed limited usefulness of procalcitonin in patients with COVID-19, likely due to the administered immunosuppressive therapy.

...