Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Sci Rep ; 14(1): 20698, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237667

RESUMEN

Interactions between tumor and stromal cells are well known to play prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs, though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use time lapse imaging and image analysis to study how co-culture geometry impacts interactions between epithelial and stromal cells. We show that extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1) result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility. We analyze these interactions in co-cultures using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. We further contrast co-cultures of PANC1 with those containing a drug resistant subline (PANC1-OR) previously established in our lab and find that heterotypic cell-cell interactions are suppressed in the latter relative to the parental line. We use RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also correlated with reduction in the hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.


Asunto(s)
Carcinoma Ductal Pancreático , Comunicación Celular , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Fibroblastos , Neoplasias Pancreáticas , Células del Estroma , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Células del Estroma/metabolismo , Fibroblastos/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Microambiente Tumoral , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Matriz Extracelular/metabolismo
2.
Aging Cell ; : e14310, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269881

RESUMEN

Aging is associated with decreased health span, and despite the recent advances made in understanding the mechanisms of aging, no antiaging drug has been approved for therapy. Therefore, strategies to promote a healthy life in aging are desirable. Previous work has shown that chronic treatment with extracellular vesicles (EVs) from young mice prolongs lifespan in old mice, but the mechanism of action of this effect on liver metabolism is not known. Here we investigated the role of treatment with EVs derived from young sedentary (EV-C) or exercised (EV-EX) mice in the metabolism of old mice and aimed to identify key youthful-associated microRNA (miRNA) cargos that could promote healthy liver function. We found that aged mice treated with either EV-C or EV-EX had higher insulin sensitivity, higher locomotor activity resulting in longer distance traveled in the cage, and a lower respiratory exchange ratio compared to mice treated with EVs from aged mice (EV-A). In the liver, treatment with young-derived EVs reduced aging-induced liver fibrosis. We identified miR-30c in the EVs as a possible youth-associated miRNA as its level was higher in circulating EVs of young mice. Treatment of aged mice with EVs transfected with miR-30c mimic reduced stellate cell activation in the liver and reduced fibrosis compared to EV-negative control by targeting Foxo3. Our results suggest that by delivering juvenile EVs to old mice, we can improve their liver health. Moreover, we identified miR-30c as a candidate for antiaging liver therapy.

3.
Anal Chem ; 96(31): 12729-12738, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39044395

RESUMEN

MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/análisis , Animales , Ratones , Femenino , Neoplasias de la Mama/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo
4.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071263

RESUMEN

Interactions between tumor and stromal cells are well known to play a prominent roles in progression of pancreatic ductal adenocarcinoma (PDAC). As knowledge of stromal crosstalk in PDAC has evolved, it has become clear that cancer associated fibroblasts can play both tumor promoting and tumor suppressive roles through a combination of paracrine crosstalk and juxtacrine interactions involving direct physical contact. Another major contributor to dismal survival statistics for PDAC is development of resistance to chemotherapy drugs. Though less is known about how the acquisition of chemoresistance impacts upon tumor-stromal crosstalk. Here, we use 3D co-culture geometries to recapitulate juxtacrine interactions between epithelial and stromal cells. In particular, extracellular matrix (ECM) overlay cultures in which stromal cells (pancreatic stellate cells, or normal human fibroblasts) are placed adjacent to PDAC cells (PANC1), result in direct heterotypic cell adhesions accompanied by dramatic fibroblast contractility which leads to highly condensed macroscopic multicellular aggregates as detected using particle image velocimetry (PIV) analysis to quantify cell velocities over the course of time lapse movie sequences. To investigate how drug resistance impacts these juxtacrine interactions we contrast cultures in which PANC1 are substituted with a drug resistant subline (PANC1-OR) previously established in our lab. We find that heterotypic cell-cell interactions are highly suppressed in drug-resistant cells relative to the parental PANC1 cells. To investigate further we conduct RNA-seq and bioinformatics analysis to identify differential gene expression in PANC1 and PANC1-OR, which shows that negative regulation of cell adhesion molecules, consistent with increased epithelial mesenchymal transition (EMT), is also consistent with loss of hetrotypic cell-cell contact necessary for the contractile behavior observed in drug naïve cultures. Overall these findings elucidate the role of drug-resistance in inhibiting an avenue of stromal crosstalk which is associated with tumor suppression and also help to establish cell culture conditions useful for further mechanistic investigation.

5.
Nat Commun ; 15(1): 4319, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773080

RESUMEN

The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.


Asunto(s)
Regiones no Traducidas 3' , Sitios de Carácter Cuantitativo , Neoplasias Gástricas , Escape del Tumor , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Escape del Tumor/genética , Regiones no Traducidas 3'/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Femenino , Masculino
6.
Front Immunol ; 15: 1290523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410515

RESUMEN

Severe COVID-19 leads to widespread transcriptomic changes in the human brain, mimicking diminished cognitive performance. As long noncoding RNAs (lncRNAs) play crucial roles in the regulation of gene expression, identification of the lncRNAs differentially expressed upon COVID-19 may nominate key regulatory nodes underpinning cognitive changes. Here we identify hundreds of lncRNAs differentially expressed in the brains of COVID-19 patients relative to uninfected age/sex-matched controls, many of which are associated with decreased cognitive performance and inflammatory cytokine response. Our analyses reveal pervasive transcriptomic changes in lncRNA expression upon severe COVID-19, which may serve as key regulators of neurocognitive changes in the brain.


Asunto(s)
COVID-19 , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , COVID-19/genética , Perfilación de la Expresión Génica , Citocinas/genética , ARN Mensajero/genética
7.
Blood ; 143(5): 429-443, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847858

RESUMEN

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , MicroARNs , Humanos , Antagomirs , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Enfermedad de Hodgkin/complicaciones , Ligandos , Linfoma de Células B Grandes Difuso/metabolismo , MicroARNs/genética , Proteínas Virales/metabolismo
8.
Cell Chem Biol ; 31(4): 776-791.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37751743

RESUMEN

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

9.
Cell Rep Phys Sci ; 4(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-38144419

RESUMEN

Gamma peptide nucleic acids (γPNAs) have recently garnered attention in diverse therapeutic and diagnostic applications. Serine and diethylene-glycol-containing γPNAs have been tested for numerous RNA-targeting purposes. Here, we comprehensively evaluated the in vitro and in vivo efficacy of pH-low insertion peptide (pHLIP)-conjugated serine and diethylene-based γPNAs. pHLIP targets only the acidic tumor microenvironment and not the normal cells. We synthesized and parallelly tested pHLIP-serine γPNAs and pHLIP-diethylene glycol γPNAs that target the seed region of microRNA-155, a microRNA that is upregulated in various cancers. We performed an all-atom molecular dynamics simulation-based computational study to elucidate the interaction of pHLIP-γPNA constructs with the lipid bilayer. We also determined the biodistribution and efficacy of the pHLIP constructs in the U2932-derived xenograft model. Overall, we established that the pHLIP-serine γPNAs show superior results in vivo compared with the pHLIP-diethylene glycol-based γPNA.

10.
Cell Rep ; 42(12): 113478, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37991919

RESUMEN

Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Cromatina , Proteómica , Senescencia Celular , Células Gigantes , Proteína p53 Supresora de Tumor/genética
11.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37985452

RESUMEN

Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR integrates gene expression, mRNA-miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated functional programs. It is available at https://bioconductor.org/packages/PanomiR.


Asunto(s)
MicroARNs , MicroARNs/metabolismo , Biología de Sistemas , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Redes Reguladoras de Genes
12.
Nucleic Acids Res ; 51(18): 9849-9862, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655623

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs first discovered in Caenorhabditis elegans. The let-7 miRNA is highly conserved in sequence, biogenesis and function from C. elegans to humans. During miRNA biogenesis, XPO5-mediated nuclear export of pre-miRNAs is a rate-limiting step and, therefore, might be critical for the quantitative control of miRNA levels, yet little is known about how this is regulated. Here we show a novel role for lipid kinase PPK-1/PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase) in regulating miRNA levels. We found that C. elegans PPK-1 functions in the lin-28/let-7 heterochronic pathway, which regulates the strict developmental timing of seam cells. In C. elegans and human cells, PPK-1/PIP5K1A regulates let-7 miRNA levels. We investigated the mechanism further in human cells and show that PIP5K1A interacts with nuclear export protein XPO5 in the nucleus to regulate mature miRNA levels by blocking the binding of XPO5 to pre-let-7 miRNA. Furthermore, we demonstrate that this role for PIP5K1A is kinase-independent. Our study uncovers the novel finding of a direct connection between PIP5K1A and miRNA biogenesis. Given that miRNAs are implicated in multiple diseases, including cancer, this new finding might lead to a novel therapeutic opportunity.


Asunto(s)
Carioferinas , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Humanos , Transporte Activo de Núcleo Celular , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Lípidos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
13.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693555

RESUMEN

COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.

14.
Mol Ther Methods Clin Dev ; 29: 271-283, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37123088

RESUMEN

Many diseases, especially cancer, are caused by the abnormal expression of non-coding microRNAs (miRNAs), which regulate gene expression, leading to the development of miRNA-based therapeutics. Synthetic miRNA inhibitors have shown promising efficacy in blocking the activity of aberrant miRNAs that are upregulated in disease-specific pathologies. On the other hand, miRNAs that aid in preventing certain diseases and are reduced in expression in the disease state need different strategies. To tackle this, miRNA mimics, which mimic the activity of endogenous miRNAs, can be delivered for those miRNAs downregulated in different disease states. However, the delivery of miRNA mimics remains a challenge. Here, we report a cationic polylactic-co-glycolic acid (PLGA)-poly-L-histidine delivery system to deliver miRNA mimics. We chose miR-34a mimics as a proof of concept for miRNA delivery. miR-34a-loaded PLGA-poly-L-histidine nanoparticles (NPs) were formulated and biophysically characterized to analyze the structural properties of miRNA mimic-loaded NPs. In vitro efficacy was determined by investigating miR-34a and downstream target levels and performing cell viability and apoptosis assays. We confirmed in vivo efficacy through prolonged survival of miR-34a NP-treated A549-derived xenograft mice treated intratumorally. The results of these studies establish PLGA-poly-L-histidine NPs as an effective delivery system for miRNA mimics for treating diseases characterized by downregulated miRNAs.

15.
Noncoding RNA ; 9(2)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37104008

RESUMEN

Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.

16.
RNA Biol ; 20(1): 136-139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37016725

RESUMEN

The Keystone Symposium 'Small Regulatory RNAs: From Bench to Bedside' was held in Santa Fe, New Mexico from May 1-4, 2022. The symposium was organized by Frank J. Slack, Jörg Vogel, Ivan Martinez and Karyn Schmidt, and brought together scientists working in noncoding RNA biology, therapeutics, and technologies to address mechanistic questions about small regulatory RNAs and facilitate translation of these findings into clinical applications. The conference addressed four specific aims: Aim 1. Focus on the exciting biology of small regulatory RNAs, highlighting the best current research into the role that small RNAs play in fundamental biological processes; Aim 2. Focus on the latest efforts to harness the power of these RNAs as agents in the fight against disease and provide the basic understanding that will drive the invention of powerful clinical tools; Aim 3. Attract leaders from both academia and industry working in small RNAs to one place for critical discussions that will advance the field and accelerate the bench to bedside use of this technology; Aim 4. Provide a stimulating environment where students, postdoctoral researchers and junior investigators, along with scientists from Biotechnology and Pharmaceutical companies specializing in small regulatory RNAs, can present and discuss their research with the best minds in the field.


Asunto(s)
ARN no Traducido , Humanos , ARN no Traducido/genética , Congresos como Asunto
17.
Cancer Res ; 83(6): 809-813, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919419

RESUMEN

Circular RNAs (circRNA) are a recently described class of RNA molecules that have attracted substantial attention as new components of disease mechanisms and as potential biomarkers in multiple diseases, including cancer. CircRNAs are often highly conserved and exhibit developmental stage- and disease-specific expression. Several studies have reported circRNA expression patterns that are associated with specific cancer types and with patient prognosis. Here, we overview the active registered clinical trials that investigate the value of circRNAs as cancer biomarkers and discuss the potential of circRNAs in clinical cancer care. Taken together, circRNAs are actively being investigated as diagnostic, predictive, and prognostic biomarkers, and their potential to serve as therapeutic intervention points motivates ongoing translational and clinical research.


Asunto(s)
Neoplasias , ARN Circular , Humanos , Biomarcadores de Tumor/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , ARN/genética , ARN no Traducido
18.
Aging Cell ; 22(4): e13785, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36748780

RESUMEN

Several microRNAs have emerged as regulators of pathways that control aging. For example, miR-228 is required for normal lifespan and dietary restriction (DR) mediated longevity through interaction with PHA-4 and SKN-1 transcription factors in Caenorhabditis elegans. miR-229,64,65, and 66, a cluster of microRNAs located adjacent to each other on chromosome III, are in the same family as miR-228, albeit with slight differences in the miR-228 seed sequence. We demonstrate that, in contrast to the anti-longevity role of miR-228, the miR-229-66 cluster is required for normal C. elegans lifespan and for the longevity observed in mir-228 mutants. miR-229-66 is also critical for lifespan extension observed under DR and reduced insulin signaling (IIS) and by constitutive nuclear SKN-1. Both DR and low-IIS upregulate the expression of the miRNA cluster, which is dependent on transcription factors PHA-4, SKN-1, and DAF-16. In turn, the expression of SKN-1 and DAF-16 requires mir-229,64,65,66. miR-229-66 targets the odd-skipped-related transcription factor, odd-2 to regulate lifespan. Knockdown of odd-2 increases lifespan, suppresses the short lifespan of mir-229,64,65,66(nDf63) III mutants, and alters levels of SKN-1 in the ASI neurons. Together with SKN-1, the miRNA cluster also indirectly regulates several genes in the xenobiotic detoxification pathway which increases wild-type lifespan and significantly rescues the short lifespan of mir-229,64,65,66(nDf63) III mutants. Thus, by interacting with SKN-1, miR-229-66 transduces the effects of DR and low-IIS in lifespan extension in C. elegans. Given that this pathway is conserved, it is possible that a similar mechanism regulates aging in more complex organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Caenorhabditis elegans/metabolismo , Longevidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
RNA ; 29(4): 434-445, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653113

RESUMEN

RNA therapeutics have emerged as next-generation therapy for the treatment of many diseases. Unlike small molecules, RNA targeted drugs are not limited by the availability of binding pockets on the protein, but rather utilize Watson-Crick (WC) base-pairing rules to recognize the target RNA and modulate gene expression. Antisense oligonucleotides (ASOs) present a powerful therapeutic approach to treat disorders triggered by genetic alterations. ASOs recognize the cognate site on the target RNA to alter gene expression. Nine single-stranded ASOs have been approved for clinical use and several candidates are in late-stage clinical trials for both rare and common diseases. Several chemical modifications, including phosphorothioates, locked nucleic acid, phosphorodiamidate, morpholino, and peptide nucleic acids (PNAs), have been investigated for efficient RNA targeting. PNAs are synthetic DNA mimics where the deoxyribose phosphate backbone is replaced by N-(2-aminoethyl)-glycine units. The neutral pseudopeptide backbone of PNAs contributes to enhanced binding affinity and high biological stability. PNAs hybridize with the complementary site in the target RNA and act by a steric hindrance--based mechanism. In the last three decades, various PNA designs, chemical modifications, and delivery strategies have been explored to demonstrate their potential as an effective and safe RNA-targeting platform. This review covers the advances in PNA-mediated targeting of coding and noncoding RNAs for a myriad of therapeutic applications.


Asunto(s)
Ácidos Nucleicos de Péptidos , ARN , ARN/genética , ARN/uso terapéutico , ARN/química , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/uso terapéutico , Ácidos Nucleicos de Péptidos/química , ADN/química , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Emparejamiento Base
20.
Photochem Photobiol ; 99(1): 120-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35699307

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human malignancies. PDAC is characterized by dense fibrous stroma which obstructs drug delivery and plays complex tumor-promoting roles. Photodynamic therapy (PDT) is a light-based modality which has been demonstrated to be clinically feasible and effective for tumors of the pancreas. Here, we use in vitro heterocellular 3D co-culture models in conjunction with imaging, bulk rheology and microrheology to investigate photodegradation of non-cellular components of PDAC stroma (photodynamic stromal depletion, PSD). By measuring the rheology of extracellular matrix (ECM) before and after PDT we find that softening of ECM is concomitant with increased transport of nanoparticles (NPs). At the same time, as shown by us previously, photodestruction of stromal fibroblasts leads to enhanced tumor response to PDT. Here we specifically evaluate the capability of PSD to enhance RNA nanomedicine delivery, using a NP carrying an inhibitor of miR-21-5P, a PDAC oncomiR. We confirm improved delivery of this therapeutic NP after PSD by observation of increased expression of PDCD4, a protein target of miR-21-5P. Collectively, these results in 3D tumor models suggest that PSD could be developed to enhance delivery of other cancer therapeutics and improve tumor response to treatment.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Nanopartículas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , MicroARNs/genética , Línea Celular Tumoral , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA