Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 111
1.
Aging Cell ; : e14165, 2024 May 16.
Article En | MEDLINE | ID: mdl-38757355

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.

2.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429579

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Epilepsy , Face/abnormalities , Fingers/abnormalities , Growth Disorders , Hypogonadism , Intellectual Disability , Mental Retardation, X-Linked , Obesity , Humans , Mice , Animals , Intellectual Disability/genetics , Repressor Proteins , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Transcription Factors
3.
BMC Biol ; 21(1): 240, 2023 10 31.
Article En | MEDLINE | ID: mdl-37907898

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Cyclin-Dependent Kinases , Drosophila melanogaster , Animals , Mice , Cell Cycle , Cyclin-Dependent Kinases/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neurons/metabolism , Phosphorylation , rhoA GTP-Binding Protein/metabolism
4.
Cell Death Dis ; 14(2): 138, 2023 02 18.
Article En | MEDLINE | ID: mdl-36801910

Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Neurogenesis/genetics , Mice, Transgenic , Hippocampus/metabolism , Neurons/metabolism , Disease Models, Animal
5.
Cell Rep ; 41(5): 111578, 2022 11 01.
Article En | MEDLINE | ID: mdl-36323247

Long-term maintenance of the adult neurogenic niche depends on proper regulation of entry and exit from quiescence. Neural stem cell (NSC) transition from quiescence to activation is a complex process requiring precise cell-cycle control coordinated with transcriptional and morphological changes. How NSC fate transitions in coordination with the cell-cycle machinery remains poorly understood. Here we show that the Rb/E2F axis functions by linking the cell-cycle machinery to pivotal regulators of NSC fate. Deletion of Rb family proteins results in activation of NSCs, inducing a transcriptomic transition toward activation. Deletion of their target activator E2Fs1/3 results in intractable quiescence and cessation of neurogenesis. We show that the Rb/E2F axis mediates these fate transitions through regulation of factors essential for NSC function, including REST and ASCL1. Thus, the Rb/E2F axis is an important regulator of NSC fate, coordinating cell-cycle control with NSC activation and quiescence fate transitions.


Adult Stem Cells , Neural Stem Cells , Neural Stem Cells/metabolism , Adult Stem Cells/metabolism , Neurogenesis/physiology , Cell Division , Cell Cycle , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
6.
J Clin Invest ; 132(22)2022 11 15.
Article En | MEDLINE | ID: mdl-36136598

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Bronchopulmonary Dysplasia , Cognitive Dysfunction , Hyperoxia , Premature Birth , Infant, Newborn , Female , Mice , Humans , Animals , Hyperoxia/complications , Hyperoxia/metabolism , Animals, Newborn , Bronchopulmonary Dysplasia/genetics , Neurogenesis , Cognitive Dysfunction/etiology , Cognition , Lung/metabolism
7.
Methods Mol Biol ; 2515: 117-127, 2022.
Article En | MEDLINE | ID: mdl-35776349

Adult neural stem and progenitor cells reside in the neurogenic niche of the adult brain and have tremendous potential in regenerative medicine. Compelling evidence suggests that adult neurogenesis plays an important role in hippocampal memory formation, plasticity, and mood regulation. Understanding the mechanisms that regulate the function of neural stem/progenitor cells within the brain is a critical step for the development of regenerative strategies to maintain or enhance neurological function. A major challenge in studying these cells is the limited cell number of adult neural stem cells, and the significant changes in their properties induced by in vitro culture and expansion. To best understand the regulation of these cells, they must be studied within their niche context. In this chapter, we provide a simplified protocol for the harvest and isolation of neural stem cell lineages directly from the murine brain, to provide input material for single-cell RNA-seq. This approach will elucidate the true transcriptional signatures and activated pathways in neural stem cell lineages, within the context of their niche environment.


Adult Stem Cells , Neural Stem Cells , Adult Stem Cells/metabolism , Animals , Brain , Hippocampus , Mice , Neurogenesis/physiology
8.
BMC Biol ; 20(1): 115, 2022 05 17.
Article En | MEDLINE | ID: mdl-35581583

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Neurons , Signal Transduction , Cells, Cultured , Neurons/metabolism , Phosphorylation , Signal Transduction/physiology
9.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Article En | MEDLINE | ID: mdl-32926942

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Antioxidants/metabolism , Glutathione/genetics , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Adenosine Triphosphate/metabolism , Animals , Apoptosis/genetics , GTP Phosphohydrolases/genetics , Glutathione/biosynthesis , Glycolysis/genetics , Humans , Membrane Fusion/genetics , Mice , Mitochondria/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
10.
Cell Death Dis ; 11(5): 321, 2020 05 05.
Article En | MEDLINE | ID: mdl-32371858

Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.


Cell Survival/genetics , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neurons/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Death/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Article En | MEDLINE | ID: mdl-30967472

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


E2F1 Transcription Factor/metabolism , E2F4 Transcription Factor/metabolism , Gene Expression Regulation , Neurons/metabolism , Repressor Proteins/biosynthesis , Stroke/metabolism , Trans-Activators/biosynthesis , Amino Acid Motifs , Animals , Cell Death , E2F1 Transcription Factor/genetics , E2F4 Transcription Factor/genetics , Mice , Mice, Transgenic , Neurons/pathology , Repressor Proteins/genetics , Stroke/genetics , Stroke/pathology , Trans-Activators/genetics
12.
Cell Death Dis ; 10(2): 135, 2019 02 12.
Article En | MEDLINE | ID: mdl-30755590

The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.


Activating Transcription Factor 4/metabolism , Cell Death/genetics , Endoplasmic Reticulum Stress/genetics , Protein Deglycase DJ-1/metabolism , Unfolded Protein Response , Up-Regulation , Activating Transcription Factor 4/genetics , Animals , Cell Line, Tumor , Cell Survival/genetics , Fibroblasts , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Oxidative Stress/genetics , Parkinson Disease/metabolism , Protein Deglycase DJ-1/genetics , RNA, Messenger/metabolism
13.
J Neurochem ; 150(3): 312-329, 2019 08.
Article En | MEDLINE | ID: mdl-30734931

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Neurons/metabolism , Protein Kinases/metabolism , Tacrolimus Binding Proteins/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Cell Death/drug effects , HEK293 Cells , Humans , Mice , Mice, Knockout , Neurons/drug effects , Neurotoxins/pharmacology , Parkinson Disease/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
14.
Nat Rev Neurosci ; 20(1): 34-48, 2019 01.
Article En | MEDLINE | ID: mdl-30464208

Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.


Brain/metabolism , Cell Differentiation/physiology , Cognition/physiology , Mitochondria/metabolism , Neural Stem Cells/metabolism , Animals , Brain/cytology , Cognition Disorders/metabolism , Cognition Disorders/pathology , Humans , Neural Stem Cells/cytology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurogenesis/physiology
15.
Proc Natl Acad Sci U S A ; 115(22): E5164-E5173, 2018 05 29.
Article En | MEDLINE | ID: mdl-29760073

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.


Cytophagocytosis/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Myeloid Cells/cytology , Parkinson Disease/physiopathology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , Cell Line , Drosophila , Humans , Mice , Microglia , Myeloid Cells/physiology , Signal Transduction/physiology
16.
J Biol Chem ; 293(25): 9580-9593, 2018 06 22.
Article En | MEDLINE | ID: mdl-29700116

Many mutations in genes encoding proteins such as Parkin, PTEN-induced putative kinase 1 (PINK1), protein deglycase DJ-1 (DJ-1 or PARK7), leucine-rich repeat kinase 2 (LRRK2), and α-synuclein have been linked to familial forms of Parkinson's disease (PD). The consequences of these mutations, such as altered mitochondrial function and pathological protein aggregation, are starting to be better understood. However, little is known about the mechanisms explaining why alterations in such diverse cellular processes lead to the selective loss of dopamine (DA) neurons in the substantia nigra (SNc) in the brain of individuals with PD. Recent work has shown that one of the reasons for the high vulnerability of SNc DA neurons is their high basal rate of mitochondrial oxidative phosphorylation (OXPHOS), resulting from their highly complex axonal arborization. Here, we examined whether axonal growth and basal mitochondrial function are altered in SNc DA neurons from Parkin-, Pink1-, or DJ-1-KO mice. We provide evidence for increased basal OXPHOS in Parkin-KO DA neurons and for reduced survival of DA neurons that have a complex axonal arbor. The surviving smaller neurons exhibited reduced vulnerability to the DA neurotoxin and mitochondrial complex I inhibitor MPP+, and this reduction was associated with reduced expression of the DA transporter. Finally, we found that glial cells play a role in the reduced resilience of DA neurons in these mice and that WT Parkin overexpression rescues this phenotype. Our results provide critical insights into the complex relationship between mitochondrial function, axonal growth, and genetic risk factors for PD.


Dopaminergic Neurons/pathology , Energy Metabolism , Mitochondria/pathology , Parkinson Disease/genetics , Parkinson Disease/mortality , Protein Deglycase DJ-1/physiology , Protein Kinases/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Cells, Cultured , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidative Phosphorylation , Parkinson Disease/pathology
17.
Antioxid Redox Signal ; 28(11): 1090-1101, 2018 Apr 10.
Article En | MEDLINE | ID: mdl-28657337

Significance: Recent discoveries in mitochondrial biology have transformed and further solidified the importance of mitochondria in development, aging, and disease. Within the realm of regenerative and stem cell research, these recent advances have brought forth new concepts that revolutionize our understanding of metabolic and redox states in the establishment of cellular identity and fate decisions. Recent Advances: Mitochondrial metabolism, morphology, and cellular redox states are dynamic characteristics that undergo shifts during stem cell differentiation. Although it was once thought that this was solely because of changing metabolic needs of differentiating cells, it is now clear that these events are driving forces in the regulation of stem cell identity and fate decisions. Critical Issues: Although recent discoveries have placed mitochondrial function and physiological reactive oxygen species (ROS) at the forefront for the regulation of stem cell self-renewal, how this may impact tissue homeostasis and regenerative capacity is poorly understood. In addition, the role of mitochondria and ROS on the maintenance of a stem cell population in many degenerative diseases and during aging is not clear, despite the fact that mitochondrial dysfunction and elevated ROS levels are commonly observed in these conditions. Future Directions: Given the newly established role for mitochondria and ROS in stem cell self-renewal capacity, special attention should now be directed in understanding how this would impact the development and progression of aging and diseases, whereby mitochondrial and ROS defects are a prominent factor. Antioxid. Redox Signal. 28, 1090-1101.

18.
Dev Dyn ; 247(1): 47-53, 2018 01.
Article En | MEDLINE | ID: mdl-28643345

Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc.


Brain/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Neurogenesis/physiology , Animals , Brain/growth & development , Energy Metabolism/physiology , Neural Stem Cells/metabolism
19.
Cell Death Differ ; 25(3): 542-572, 2018 03.
Article En | MEDLINE | ID: mdl-29229998

Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.


Mitochondria/metabolism , Mitochondria/pathology , Models, Biological , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Animals , Humans
20.
Curr Opin Cell Biol ; 49: 1-8, 2017 12.
Article En | MEDLINE | ID: mdl-29175320

Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions.


Cell Differentiation/genetics , Cell Self Renewal/genetics , Mitochondria/metabolism , Humans
...