Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Trop Med Hyg ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604476

RESUMEN

Progress in malaria control has stalled in recent years. With growing resistance to existing malaria vector control insecticides and the introduction of new vector control products, national malaria control programs (NMCPs) increasingly need to make data-driven, subnational decisions to inform vector control deployment. As NMCPs are increasingly conducting subnational stratification of malaria control interventions, including malaria vector control, country-specific frameworks and platforms are increasingly needed to guide data use for vector control deployment. Integration of routine health systems data, entomological data, and vector control program data in observational longitudinal analyses offers an opportunity for NMCPs and research institutions to conduct evaluations of existing and novel vector control interventions. Drawing on the experience of implementing 22 vector control evaluations across 14 countries in sub-Saharan Africa, as well as published and gray literature on vector control impact evaluations using routine health information system data, this article provides practical guidance on the design of these evaluations, makes recommendations for key variables and data sources, and proposes methods to address challenges in data quality. Key recommendations include appropriate parameterization of impact and coverage indicators, incorporating explanatory covariates and contextual factors from multiple sources (including rapid diagnostic testing stockouts; insecticide susceptibility; vector density measures; vector control coverage, use, and durability; climate and other malaria and non-malaria health programs), and assessing data quality before the evaluation through either on-the-ground or remote data quality assessments. These recommendations may increase the frequency, rigor, and utilization of routine data sources to inform national program decision-making for vector control.

2.
JMIR Res Protoc ; 12: e41197, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939832

RESUMEN

BACKGROUND: The gains made against malaria have stagnated since 2015, threatened further by increasing resistance to insecticides and antimalarials. Improvement in malaria control necessitates a multipronged strategy, which includes the development of novel tools. One such tool is mass drug administration (MDA) with endectocides, primarily ivermectin, which has shown promise in reducing malaria transmission through lethal and sublethal impacts on the mosquito vector. OBJECTIVE: The primary objective of the study is to assess the impact of repeated ivermectin MDA on malaria incidence in children aged ≤10 years. METHODS: Repeat Ivermectin MDA for Malaria Control II is a double-blind, placebo-controlled, cluster-randomized, and parallel-group trial conducted in a setting with intense seasonal malaria transmission in Southwest Burkina Faso. The study included 14 discrete villages: 7 (50%) randomized to receive standard measures (seasonal malaria chemoprevention [SMC] and bed net use for children aged 3 to 59 months) and placebo, and 7 (50%) randomized to receive standard measures and monthly ivermectin MDA at 300 µg/kg for 3 consecutive days, provided under supervision to all eligible village inhabitants, over 2 successive rainy seasons. Nonpregnant individuals >90 cm in height were eligible for ivermectin MDA, and cotreatment with ivermectin and SMC was not permitted. The primary outcome is malaria incidence in children aged ≤10 years, as assessed by active case surveillance. The secondary safety outcome of repeated ivermectin MDA was assessed through active and passive adverse event monitoring. RESULTS: The trial intervention was conducted from July to November in 2019 and 2020, with additional sampling of humans and mosquitoes occurring through February 2022 to assess postintervention changes in transmission patterns. Additional human and entomological assessments were performed over the 2 years in a subset of households from 6 cross-sectional villages. A subset of individuals underwent additional sampling in 2020 to characterize ivermectin pharmacokinetics and pharmacodynamics. Analysis and unblinding will commence once the database has been completed, cleaned, and locked. CONCLUSIONS: Our trial represents the first study to directly assess the impact of a novel approach for malaria control, ivermectin MDA as a mosquitocidal agent, layered into existing standard-of-care interventions. The study was designed to leverage the current SMC deployment infrastructure and will provide evidence regarding the additional benefit of ivermectin MDA in reducing malaria incidence in children. TRIAL REGISTRATIONS: ClinicalTrials.gov NCT03967054; https://clinicaltrials.gov/ct2/show/NCT03967054 and Pan African Clinical Trials Registry PACT201907479787308; https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=8219. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/41197.

3.
Malar J ; 22(1): 60, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803858

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) are effective tools to diagnose and inform the treatment of malaria in adults and children. The recent development of a highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum has prompted questions over whether it could improve the diagnosis of malaria in pregnancy and pregnancy outcomes in malaria endemic areas. METHODS: This landscape review collates studies addressing the clinical performance of the HS-RDT. Thirteen studies were identified comparing the HS-RDT and conventional RDT (co-RDT) to molecular methods to detect malaria in pregnancy. Using data from five completed studies, the association of epidemiological and pregnancy-related factors on the sensitivity of HS-RDT, and comparisons with co-RDT were investigated. The studies were conducted in 4 countries over a range of transmission intensities in largely asymptomatic women. RESULTS: Sensitivity of both RDTs varied widely (HS-RDT range 19.6 to 85.7%, co-RDT range 22.8 to 82.8% compared to molecular testing) yet HS-RDT detected individuals with similar parasite densities across all the studies including different geographies and transmission areas [geometric mean parasitaemia around 100 parasites per µL (p/µL)]. HS-RDTs were capable of detecting low-density parasitaemias and in one study detected around 30% of infections with parasite densities of 0-2 p/µL compared to the co-RDT in the same study which detected around 15%. CONCLUSION: The HS-RDT has a slightly higher analytical sensitivity to detect malaria infections in pregnancy than co-RDT but this mostly translates to only fractional and not statistically significant improvement in clinical performance by gravidity, trimester, geography or transmission intensity. The analysis presented here highlights the need for larger and more studies to evaluate incremental improvements in RDTs. The HS-RDT could be used in any situation where co-RDT are currently used for P. falciparum diagnosis, if storage conditions can be adhered to.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Embarazo , Niño , Humanos , Femenino , Plasmodium falciparum , Prueba de Diagnóstico Rápido , Sensibilidad y Especificidad , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Antígenos de Protozoos/análisis
4.
BMC Infect Dis ; 22(1): 121, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120441

RESUMEN

BACKGROUND: A new more highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum malaria (Alere™/Abbott Malaria Ag P.f RDT [05FK140], now called NxTek™ Eliminate Malaria Ag Pf) was launched in 2017. The test has already been used in many research studies in a wide range of geographies and use cases. METHODS: In this study, we collate all published and available unpublished studies that use the HS-RDT and assess its performance in (i) prevalence surveys, (ii) clinical diagnosis, (iii) screening pregnant women, and (iv) active case detection. Two individual-level data sets from asymptomatic populations are used to fit logistic regression models to estimate the probability of HS-RDT positivity based on histidine-rich protein 2 (HRP2) concentration and parasite density. The performance of the HS-RDT in prevalence surveys is estimated by calculating the sensitivity and positive proportion in comparison to polymerase chain reaction (PCR) and conventional malaria RDTs. RESULTS: We find that across 18 studies, in prevalence surveys, the mean sensitivity of the HS-RDT is estimated to be 56.1% (95% confidence interval [CI] 46.9-65.4%) compared to 44.3% (95% CI 32.6-56.0%) for a conventional RDT (co-RDT) when using nucleic acid amplification techniques as the reference standard. In studies where prevalence was estimated using both the HS-RDT and a co-RDT, we found that prevalence was on average 46% higher using a HS-RDT compared to a co-RDT. For use in clinical diagnosis and screening pregnant women, the HS-RDT was not significantly more sensitive than a co-RDT. CONCLUSIONS: Overall, the evidence presented here suggests that the HS-RDT is more sensitive in asymptomatic populations and could provide a marginal improvement in clinical diagnosis and screening pregnant women. Although the HS-RDT has limited temperature stability and shelf-life claims compared to co-RDTs, there is no evidence to suggest, given this test has the same cost as current RDTs, it would have any negative impacts in terms of malaria misdiagnosis if it were widely used in all four population groups explored here.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos , Estudios Transversales , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Malaria/diagnóstico , Malaria/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum , Embarazo , Proteínas Protozoarias , Sensibilidad y Especificidad
5.
J Infect Dis ; 225(8): 1415-1423, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32691047

RESUMEN

BACKGROUND: In 2016, the Zambian National Malaria Elimination Centre started programmatic mass drug administration (pMDA) campaigns with dihydroartemisinin-piperaquine as a malaria elimination tool in Southern Province. Two rounds were administered, 2 months apart (coverage 70% and 57%, respectively). We evaluated the impact of 1 year of pMDA on malaria incidence using routine data. METHODS: We conducted an interrupted time series with comparison group analysis on monthly incidence data collected at the health facility catchment area (HFCA) level, with a negative binomial model using generalized estimating equations. Programmatic mass drug administration was conducted in HFCAs with greater than 50 cases/1000 people per year. Ten HFCAs with incidence rates marginally above this threshold (pMDA group) were compared with 20 HFCAs marginally below (comparison group). RESULTS: The pMDA HFCAs saw a 46% greater decrease in incidence at the time of intervention than the comparison areas (incidence rate ratio = 0.536; confidence interval = 0.337-0.852); however, incidence increased toward the end of the season. No HFCAs saw a transmission interruption. CONCLUSIONS: Programmatic mass drug administration, implemented during 1 year with imperfect coverage in low transmission areas with suboptimal vector control coverage, significantly reduced incidence. However, elimination will require additional tools. Routine data are important resources for programmatic impact evaluations and should be considered for future analyses.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Humanos , Incidencia , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Administración Masiva de Medicamentos , Zambia/epidemiología
6.
Clin Trials ; 18(5): 582-593, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218684

RESUMEN

BACKGROUND: Cluster-randomized trials allow for the evaluation of a community-level or group-/cluster-level intervention. For studies that require a cluster-randomized trial design to evaluate cluster-level interventions aimed at controlling vector-borne diseases, it may be difficult to assess a large number of clusters while performing the additional work needed to monitor participants, vectors, and environmental factors associated with the disease. One such example of a cluster-randomized trial with few clusters was the "efficacy and risk of harms of repeated ivermectin mass drug administrations for control of malaria" trial. Although previous work has provided recommendations for analyzing trials like repeated ivermectin mass drug administrations for control of malaria, additional evaluation of the multiple approaches for analysis is needed for study designs with count outcomes. METHODS: Using a simulation study, we applied three analysis frameworks to three cluster-randomized trial designs (single-year, 2-year parallel, and 2-year crossover) in the context of a 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria. Mixed-effects models, generalized estimating equations, and cluster-level analyses were evaluated. Additional 2-year parallel designs with different numbers of clusters and different cluster correlations were also explored. RESULTS: Mixed-effects models with a small sample correction and unweighted cluster-level summaries yielded both high power and control of the Type I error rate. Generalized estimating equation approaches that utilized small sample corrections controlled the Type I error rate but did not confer greater power when compared to a mixed model approach with small sample correction. The crossover design generally yielded higher power relative to the parallel equivalent. Differences in power between analysis methods became less pronounced as the number of clusters increased. The strength of within-cluster correlation impacted the relative differences in power. CONCLUSION: Regardless of study design, cluster-level analyses as well as individual-level analyses like mixed-effects models or generalized estimating equations with small sample size corrections can both provide reliable results in small cluster settings. For 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria, we recommend a mixed-effects model with a pseudo-likelihood approximation method and Kenward-Roger correction. Similarly designed studies with small sample sizes and count outcomes should consider adjustments for small sample sizes when using a mixed-effects model or generalized estimating equation for analysis. Although the 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria is already underway as a parallel trial, applying the simulation parameters to a crossover design yielded improved power, suggesting that crossover designs may be valuable in settings where the number of available clusters is limited. Finally, the sensitivity of the analysis approach to the strength of within-cluster correlation should be carefully considered when selecting the primary analysis for a cluster-randomized trial.


Asunto(s)
Ivermectina , Malaria , Análisis por Conglomerados , Estudios de Seguimiento , Humanos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Administración Masiva de Medicamentos , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Tamaño de la Muestra
7.
Mol Biol Evol ; 38(1): 274-289, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32898225

RESUMEN

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.


Asunto(s)
Malaria/transmisión , Modelos Estadísticos , Plasmodium/genética , Adolescente , Niño , Preescolar , Variación Genética , Humanos , Kenia/epidemiología , Malaria/epidemiología , Malaria/parasitología , Mosquitos Vectores/parasitología , Prevalencia , Sobreinfección , Uganda/epidemiología
8.
PLoS Med ; 17(10): e1003370, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33119589

RESUMEN

BACKGROUND: Reactive malaria strategies are predicated on the assumption that individuals infected with malaria are clustered within households or neighbourhoods. Despite the widespread programmatic implementation of reactive strategies, little empirical evidence exists as to whether such strategies are appropriate and, if so, how they should be most effectively implemented. METHODS AND FINDINGS: We collated 2 different datasets to assess clustering of malaria infections within households: (i) demographic health survey (DHS) data, integrating household information and patent malaria infection, recent fever, and recent treatment status in children; and (ii) data from cross-sectional and reactive detection studies containing information on the household and malaria infection status (patent and subpatent) of all-aged individuals. Both datasets were used to assess the odds of infections clustering within index households, where index households were defined based on whether they contained infections detectable through one of 3 programmatic strategies: (a) Reactive Case Detection (RACD) classifed by confirmed clinical cases, (b) Mass Screen and Treat (MSAT) classifed by febrile, symptomatic infections, and (c) Mass Test and Treat (MTAT) classifed by infections detectable using routine diagnostics. Data included 59,050 infections in 208,140 children under 7 years old (median age = 2 years, minimum = 2, maximum = 7) by microscopy/rapid diagnostic test (RDT) from 57 DHSs conducted between November 2006 and December 2018 from 23 African countries. Data representing 11,349 infections across all ages (median age = 22 years, minimum = 0.5, maximum = 100) detected by molecular tools in 132,590 individuals in 43 studies published between April 2006 and May 2019 in 20 African, American, Asian, and Middle Eastern countries were obtained from the published literature. Extensive clustering was observed-overall, there was a 20.40 greater (95% credible interval [CrI] 0.35-20.45; P < 0.001) odds of patent infections (according to the DHS data) and 5.13 greater odds (95% CI 3.85-6.84; P < 0.001) of molecularly detected infections (from the published literature) detected within households in which a programmatically detectable infection resides. The strongest degree of clustering identified by polymerase chain reaction (PCR)/ loop mediated isothermal amplification (LAMP) was observed using the MTAT strategy (odds ratio [OR] = 6.79, 95% CI 4.42-10.43) but was not significantly different when compared to MSAT (OR = 5.2, 95% CI 3.22-8.37; P-difference = 0.883) and RACD (OR = 4.08, 95% CI 2.55-6.53; P-difference = 0.29). Across both datasets, clustering became more prominent when transmission was low. However, limitations to our analysis include not accounting for any malaria control interventions in place, malaria seasonality, or the likely heterogeneity of transmission within study sites. Clustering may thus have been underestimated. CONCLUSIONS: In areas where malaria transmission is peri-domestic, there are programmatic options for identifying households where residual infections are likely to be found. Combining these detection strategies with presumptively treating residents of index households over a sustained time period could contribute to malaria elimination efforts.


Asunto(s)
Pruebas Diagnósticas de Rutina/tendencias , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , África/epidemiología , Niño , Preescolar , Análisis por Conglomerados , Estudios Transversales , Pruebas Diagnósticas de Rutina/métodos , Composición Familiar , Femenino , Humanos , Lactante , Recién Nacido , Malaria Falciparum/tratamiento farmacológico , Masculino , Tamizaje Masivo/métodos , Tamizaje Masivo/tendencias , Microscopía/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/patogenicidad , Reacción en Cadena de la Polimerasa/métodos
9.
Malar J ; 19(1): 323, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883286

RESUMEN

BACKGROUND: The recent expansion of tools designed to accurately quantify malaria parasite-produced antigens has enabled us to evaluate the performance of rapid diagnostic tests (RDTs) as a function of the antigens they detect-typically histidine rich protein 2 (HRP2) or lactate dehydrogenase (LDH). METHODS: For this analysis, whole blood specimens from a longitudinal study in Bancoumana, Mali were used to evaluate the performance of the ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT). The samples were collected as part of a transmission-blocking vaccine trial in a high transmission region for Plasmodium falciparum malaria. Furthermore, antigen dynamics after successful anti-malarial drug treatment were evaluated in these samples using the Q-Plex Human Malaria Array (4-Plex) to quantify antigen concentrations. RESULTS: The uRDT had a 50% probability of a positive result at 207 pg/mL HRP2 [95% credible interval (CrI) 160-268]. Individuals with symptomatic infection remained positive by uRDT for a median of 33 days [95% confidence interval (CI) 28-47] post anti-malarial drug treatment. Biphasic exponential decay models accurately captured the population level post-treatment dynamics of both HRP2 and Plasmodium LDH (pLDH), with the latter decaying more rapidly. Motivated by these differences in rates of decay, a novel algorithm that used HRP2:pLDH ratios to predict if an individual had active versus recently cleared P. falciparum infection was developed. The algorithm had 77.5% accuracy in correctly classifying antigen-positive individuals as those with and without active infection. CONCLUSIONS: These results characterize the performance of the ultra-sensitive RDT and demonstrate the potential for emerging antigen-quantifying technologies in the field of malaria diagnostics to be helpful tools in distinguishing between active versus recently cleared malaria infections.


Asunto(s)
Antígenos de Protozoos/aislamiento & purificación , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , L-Lactato Deshidrogenasa/aislamiento & purificación , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Adulto , Humanos , Malí , Persona de Mediana Edad , Sensibilidad y Especificidad , Adulto Joven
10.
Nat Med ; 26(9): 1411-1416, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32770167

RESUMEN

The burden of malaria is heavily concentrated in sub-Saharan Africa (SSA) where cases and deaths associated with COVID-19 are rising1. In response, countries are implementing societal measures aimed at curtailing transmission of SARS-CoV-22,3. Despite these measures, the COVID-19 epidemic could still result in millions of deaths as local health facilities become overwhelmed4. Advances in malaria control this century have been largely due to distribution of long-lasting insecticidal nets (LLINs)5, with many SSA countries having planned campaigns for 2020. In the present study, we use COVID-19 and malaria transmission models to estimate the impact of disruption of malaria prevention activities and other core health services under four different COVID-19 epidemic scenarios. If activities are halted, the malaria burden in 2020 could be more than double that of 2019. In Nigeria alone, reducing case management for 6 months and delaying LLIN campaigns could result in 81,000 (44,000-119,000) additional deaths. Mitigating these negative impacts is achievable, and LLIN distributions in particular should be prioritized alongside access to antimalarial treatments to prevent substantial malaria epidemics.


Asunto(s)
Antimaláricos/uso terapéutico , Infecciones por Coronavirus/epidemiología , Malaria/epidemiología , Pandemias , Neumonía Viral/epidemiología , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/parasitología , Infecciones por Coronavirus/virología , Humanos , Insecticidas/uso terapéutico , Malaria/complicaciones , Malaria/parasitología , Malaria/virología , Control de Mosquitos , Neumonía Viral/complicaciones , Neumonía Viral/parasitología , Neumonía Viral/virología , Salud Pública , SARS-CoV-2
11.
Lancet Infect Dis ; 20(4): 498-508, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31948767

RESUMEN

BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 µg/kg (1 × 400 µg/kg) and three consecutive daily doses of 300 µg/kg per day (3 × 300 µg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 µg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship.


Asunto(s)
Ivermectina/administración & dosificación , Malaria , Mosquitos Vectores , Animales , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Burkina Faso/epidemiología , Niño , Femenino , Humanos , Incidencia , Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Masculino , Administración Masiva de Medicamentos , Prevalencia , Quinolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estaciones del Año
13.
BMJ Glob Health ; 4(4): e001582, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31406591

RESUMEN

Surveillance and diagnosis of Plasmodium falciparum malaria relies predominantly on rapid diagnostic tests (RDT). However, false-negative (FN) RDT results are known to occur for a variety of reasons, including operator error, poor storage conditions, pfhrp2/3 gene deletions, poor performance of specific RDT brands and lots, and low-parasite density infections. We used RDT and microscopy results from 85 000 children enrolled in Demographic Health Surveys and Malaria Indicator Surveys from 2009 to 2015 across 19 countries to explore the distribution of and risk factors for FN-RDTs in sub-Saharan Africa, where malaria's impact is greatest. We sought to (1) identify spatial and demographic patterns of FN-RDT results, defined as a negative RDT but positive gold standard microscopy test, and (2) estimate the percentage of infections missed within community-based malaria surveys due to FN-RDT results. Across all studies, 19.9% (95% CI 19.0% to 20.9%) of microscopy-positive subjects were negative by RDT. The distribution of FN-RDT results was spatially heterogeneous. The variance in FN-RDT results was best explained by the prevalence of malaria, with an increase in FN-RDT results observed at lower transmission intensities, among younger subjects, and in urban areas. The observed proportion of FN-RDT results was not predicted by differences in RDT brand or lot performance alone. These findings characterise how the probability of detection by RDTs varies in different transmission settings and emphasise the need for careful interpretation of prevalence estimates based on surveys employing RDTs alone. Further studies are needed to characterise the cost-effectiveness of improved malaria diagnostics (eg, PCR or highly sensitive RDTs) in community-based surveys, especially in regions of low transmission intensity or high urbanicity.

15.
Elife ; 82019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045490

RESUMEN

Ten countries have reported pfhrp2/pfhrp3 gene deletions since the first observation of pfhrp2-deleted parasites in 2012. In a previous study (Watson et al., 2017), we characterised the drivers selecting for pfhrp2/3 deletions and mapped the regions in Africa with the greatest selection pressure. In February 2018, the World Health Organization issued guidance on investigating suspected false-negative rapid diagnostic tests (RDTs) due to pfhrp2/3 deletions. However, no guidance is provided regarding the timing of investigations. Failure to consider seasonal variation could cause premature decisions to switch to alternative RDTs. In response, we have extended our methods and predict that the prevalence of false-negative RDTs due to pfhrp2/3 deletions is highest when sampling from younger individuals during the beginning of the rainy season. We conclude by producing a map of the regions impacted by seasonal fluctuations in pfhrp2/3 deletions and a database identifying optimum sampling intervals to support malaria control programmes.


Asunto(s)
Antígenos de Protozoos/genética , Transmisión de Enfermedad Infecciosa , Eliminación de Gen , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Estaciones del Año , África , Errores Diagnósticos , Pruebas Diagnósticas de Rutina/métodos , Monitoreo Epidemiológico , Humanos , Malaria Falciparum/transmisión , Plasmodium falciparum/aislamiento & purificación , Prevalencia
16.
Nat Commun ; 10(1): 1433, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926893

RESUMEN

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Parásitos/fisiología , Plasmodium falciparum/fisiología , Animales , Células Germinativas/metabolismo , Humanos , Parasitemia/parasitología , Probabilidad , Factores de Tiempo
17.
Lancet ; 393(10180): 1517-1526, 2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-30878222

RESUMEN

BACKGROUND: Ivermectin is widely used in mass drug administrations for controlling neglected parasitic diseases, and can be lethal to malaria vectors that bite treated humans. Therefore, it could be a new tool to reduce plasmodium transmission. We tested the hypothesis that frequently repeated mass administrations of ivermectin to village residents would reduce clinical malaria episodes in children and would be well tolerated with minimal harms. METHODS: We invited villages (clusters) in Burkina Faso to participate in a single-blind (outcomes assessor), parallel-assignment, two-arm, cluster-randomised trial over the 2015 rainy season. Villages were assigned (1:1) by random draw to either the intervention group or the control group. In both groups, all eligible participants who consented to the treatment and were at least 90 cm in height received single oral doses of ivermectin (150-200 µg/kg) and albendazole (400 mg), and those in the intervention group received five further doses of ivermectin alone at 3-week intervals thereafter over the 18-week treatment phase. The primary outcome was cumulative incidence of uncomplicated malaria episodes over 18 weeks (analysed on a cluster intention-to-treat basis) in an active case detection cohort of children aged 5 years or younger living in the study villages. This trial is registered with ClinicalTrials.gov, number NCT02509481. FINDINGS: Eight villages agreed to participate, and four were randomly assigned to each group. 2712 participants (1333 [49%] males and 1379 [51%] females; median age 15 years [IQR 6-34]), including 590 children aged 5 years or younger, provided consent and were enrolled between May 22 and July 20, 2015 (except for 77 participants enrolled after these dates because of unavailability before the first mass drug administration, travel into the village during the trial, or birth), with 1447 enrolled into the intervention group and 1265 into the control group. 330 (23%) participants in the intervention group and 233 (18%) in the control group met the exclusion criteria for mass drug administration. Most children in the active case detection cohort were not treated because of height restrictions. 14 (4%) children in the intervention group and 10 (4%) in the control group were lost to follow-up. Cumulative malaria incidence was reduced in the intervention group (648 episodes among 327 children; estimated mean 2·00 episodes per child) compared with the control group (647 episodes among 263 children; 2·49 episodes per child; risk difference -0·49 [95% CI -0·79 to -0·21], p=0·0009, adjusted for sex and clustering). The risk of adverse events among all participants did not differ between groups (45 events [3%] among 1447 participants in the intervention group vs 24 events [2%] among 1265 in the control group; risk ratio 1·63 [1·01 to 2·67]; risk difference 1·21 [0·04 to 2·38], p=0·060), and no adverse reactions were reported. INTERPRETATION: Frequently repeated mass administrations of ivermectin during the malaria transmission season can reduce malaria episodes among children without significantly increasing harms in the populace. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Antiparasitarios/administración & dosificación , Ivermectina/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Administración Masiva de Medicamentos , Adolescente , Adulto , Albendazol/uso terapéutico , Antiparasitarios/efectos adversos , Burkina Faso , Niño , Análisis por Conglomerados , Esquema de Medicación , Femenino , Humanos , Ivermectina/efectos adversos , Masculino , Resultado del Tratamiento , Adulto Joven
18.
Lancet Infect Dis ; 18(6): 615-626, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29602751

RESUMEN

BACKGROUND: Ivermectin is being considered for mass drug administration for malaria due to its ability to kill mosquitoes feeding on recently treated individuals. However, standard, single doses of 150-200 µg/kg used for onchocerciasis and lymphatic filariasis have a short-lived mosquitocidal effect (<7 days). Because ivermectin is well tolerated up to 2000 µg/kg, we aimed to establish the safety, tolerability, and mosquitocidal efficacy of 3 day courses of high-dose ivermectin, co-administered with a standard malaria treatment. METHODS: We did a randomised, double-blind, placebo-controlled, superiority trial at the Jaramogi Oginga Odinga Teaching and Referral Hospital (Kisumu, Kenya). Adults (aged 18-50 years) were eligible if they had confirmed symptomatic uncomplicated Plasmodium falciparum malaria and agreed to the follow-up schedule. Participants were randomly assigned (1:1:1) using sealed envelopes, stratified by sex and body-mass index (men: <21 vs ≥21 kg/m2; women: <23 vs ≥23 kg/m2), with permuted blocks of three, to receive 3 days of ivermectin 300 µg/kg per day, ivermectin 600 µg/kg per day, or placebo, all co-administered with 3 days of dihydroartemisinin-piperaquine. Blood of patients taken on post-treatment days 0, 2 + 4 h, 7, 10, 14, 21, and 28 was fed to laboratory-reared Anopheles gambiae sensu stricto mosquitoes, and mosquito survival was assessed daily for 28 days after feeding. The primary outcome was 14-day cumulative mortality of mosquitoes fed 7 days after ivermectin treatment (from participants who received at least one dose of study medication). The study is registered with ClinicalTrials.gov, number NCT02511353. FINDINGS: Between July 20, 2015, and May 7, 2016, 741 adults with malaria were assessed for eligibility, of whom 141 were randomly assigned to receive ivermectin 600 µg/kg per day (n=47), ivermectin 300 µg/kg per day (n=48), or placebo (n=46). 128 patients (91%) attended the primary outcome visit 7 days post treatment. Compared with placebo, ivermectin was associated with higher 14 day post-feeding mosquito mortality when fed on blood taken 7 days post treatment (ivermectin 600 µg/kg per day risk ratio [RR] 2·26, 95% CI 1·93-2·65, p<0·0001; hazard ratio [HR] 6·32, 4·61-8·67, p<0·0001; ivermectin 300 µg/kg per day RR 2·18, 1·86-2·57, p<0·0001; HR 4·21, 3·06-5·79, p<0·0001). Mosquito mortality remained significantly increased 28 days post treatment (ivermectin 600 µg/kg per day RR 1·23, 1·01-1·50, p=0·0374; and ivermectin 300 µg/kg per day 1·21, 1·01-1·44, p=0·0337). Five (11%) of 45 patients receiving ivermectin 600 µg/kg per day, two (4%) of 48 patients receiving ivermectin 300 µg/kg per day, and none of 46 patients receiving placebo had one or more treatment-related adverse events. INTERPRETATION: Ivermectin at both doses assessed was well tolerated and reduced mosquito survival for at least 28 days after treatment. Ivermectin 300 µg/kg per day for 3 days provided a good balance between efficacy and tolerability, and this drug shows promise as a potential new tool for malaria elimination. FUNDING: Malaria Eradication Scientific Alliance (MESA) and US Centers for Disease Control and Prevention (CDC).


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Insecticidas/uso terapéutico , Ivermectina/uso terapéutico , Malaria/tratamiento farmacológico , Quinolinas/farmacología , Adolescente , Adulto , Combinación Albuterol y Ipratropio , Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Método Doble Ciego , Quimioterapia Combinada , Femenino , Humanos , Insecticidas/administración & dosificación , Insecticidas/efectos adversos , Ivermectina/administración & dosificación , Ivermectina/efectos adversos , Masculino , Persona de Mediana Edad , Quinolinas/administración & dosificación , Adulto Joven
19.
Clin Infect Dis ; 66(12): 1883-1891, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29304258

RESUMEN

Background: The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. Methods: We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Results: Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. Conclusions: In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.


Asunto(s)
Anopheles/parasitología , Infecciones Asintomáticas/epidemiología , Reservorios de Enfermedades/parasitología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Adolescente , Adulto , Animales , Niño , Preescolar , Enfermedades Endémicas/estadística & datos numéricos , Etiopía/epidemiología , Femenino , Humanos , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Prevalencia , Adulto Joven
20.
PLoS Med ; 14(11): e1002448, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29161259

RESUMEN

BACKGROUND: Although significant progress has been made in reducing malaria transmission globally in recent years, a large number of people remain at risk and hence the gains made are fragile. Funding lags well behind amounts needed to protect all those at risk and ongoing contributions from major donors, such as the President's Malaria Initiative (PMI), are vital to maintain progress and pursue further reductions in burden. We use a mathematical modelling approach to estimate the impact of PMI investments to date in reducing malaria burden and to explore the potential negative impact on malaria burden should a proposed 44% reduction in PMI funding occur. METHODS AND FINDINGS: We combined an established mathematical model of Plasmodium falciparum transmission dynamics with epidemiological, intervention, and PMI-financing data to estimate the contribution PMI has made to malaria control via funding for long-lasting insecticide treated nets (LLINs), indoor residual spraying (IRS), and artemisinin combination therapies (ACTs). We estimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million) malaria cases and saved 940,049 (95% CrI: 545,228, 1.4 million) lives since 2005. If funding is maintained, PMI-funded interventions are estimated to avert a further 162 million (95% CrI: 116 million, 194 million) cases, saving a further 692,589 (95% CrI: 392,694, 955,653) lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166) per Disability Adjusted Life Year (DALY) averted, PMI-funded interventions are highly cost-effective. We also demonstrate the further impact of this investment by reducing caseloads on health systems. If a 44% reduction in PMI funding were to occur, we predict that this loss of direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million) cases and 290,649 (95% CrI: 167,208, 395,263) deaths between 2017 and 2020. We have not modelled indirect impacts of PMI funding (such as health systems strengthening) in this analysis. CONCLUSIONS: Our model estimates that PMI has played a significant role in reducing malaria cases and deaths since its inception. Reductions in funding to PMI could lead to large increases in the number of malaria cases and deaths, damaging global goals of malaria control and elimination.


Asunto(s)
Malaria Falciparum/prevención & control , Plasmodium falciparum , Artemisininas/uso terapéutico , Femenino , Humanos , Insecticidas/uso terapéutico , Malaria Falciparum/mortalidad , Modelos Biológicos , Mosquiteros , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...