Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38962494

RESUMEN

Staphylococcus aureus (Sa) and Acinetobacter baumannii (Ab) are frequently co-isolated from polymicrobial infections that are severe and refractory to therapy. Here, we apply a combination of wet-lab experiments and in silico modeling to unveil the intricate nature of the Ab/Sa interaction using both, representative laboratory strains and strains co-isolated from clinical samples. This comprehensive methodology allowed uncovering Sa's capability to exert a partial interference on Ab by the expression of phenol-soluble modulins. In addition, we observed a cross-feeding mechanism by which Sa supports the growth of Ab by providing acetoin as an alternative carbon source. This study is the first to dissect the Ab/Sa interaction dynamics wherein competitive and cooperative strategies can intertwine. Through our findings, we illuminate the ecological mechanisms supporting their coexistence in the context of polymicrobial infections. Our research not only enriches our understanding but also opens doors to potential therapeutic avenues in managing these challenging infections.

2.
Front Immunol ; 15: 1334616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571946

RESUMEN

Staphylococcus aureus is a highly successful pathogen infecting various body parts and forming biofilms on natural and artificial surfaces resulting in difficult-to-treat and chronic infections. We investigated the secreted cytokines and proteomes of isolated peripheral blood mononuclear cells (PBMCs) from healthy volunteers exposed to methicillin-resistant S. aureus (MRSA) biofilms or planktonic bacteria. Additionally, the cytokine profiles in sera from patients with community-acquired pneumonia (CAP) caused by S. aureus were investigated. The aim was to gain insights into the immune response involved and differentiate between the planktonic and sessile MRSA forms. We identified 321 and 298 targets that were significantly differently expressed in PBMCs when exposed to planktonic or biofilm-embedded bacteria, respectively. PBMCs exposed to planktonic MRSA cells secreted increased levels of TNF-α, while IL-18 was elevated when exposed to the biofilm. The machine-learning analyses of the cytokine profiles obtained for the in vitro PBMCs and CAP sera distinguished between the two types of bacteria forms based on cytokines IL-18, IL12, and IL-17, and with a lower importance IL-6. Particularly, IL-18 which has not been correlated with S. aureus biofilms so far might represent a suitable marker for monitoring chronification during MRSA infection to individualize the therapy, but this hypothesis must be proved in clinical trials.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Citocinas , Staphylococcus aureus , Interleucina-18 , Proteoma , Plancton , Leucocitos Mononucleares , Biopelículas
3.
JAC Antimicrob Resist ; 6(2): dlae045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38500519

RESUMEN

Background: In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives: To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods: Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results: Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion: Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.

4.
Microbiol Spectr ; 12(3): e0307823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353551

RESUMEN

An increasing amount of evidence has linked critical illness with dysbiotic microbiome signatures in different body sites. The disturbance of the indigenous microbiota structures has been further associated with disease severity and outcome and has been suggested to pose an additional risk for complications in intensive care units (ICUs), including hospital-acquired infections. A better understanding of the microbial dysbiosis in critical illness might thus help to develop strategies for the prevention of such complications. While most of the studies addressing microbiome changes in ICU patients have focused on the gut, the lung, or the oral cavity, little is known about the microbial communities on the skin of ICU patients. Since the skin is the outermost organ and the first immune barrier against pathogens, its microbiome might play an important role in the risk management for critically ill patients. This observational study characterizes the skin microbiome in ICU patients covering five different body sites at the time of admission. Our results show a profound dysbiosis on the skin of critically ill patients, which is characterized by a loss of site specificity and an overrepresentation of gut bacteria on all skin sites when compared to a healthy group. This study opens a new avenue for further investigations on the effect of skin dysbiosis in the ICU setting and points out the need of strategies for the management of dysbiosis in critically ill patients.IMPORTANCEUnbalanced gut microbiota in critically ill patients has been associated with poor outcome and complications during the intensive care unit (ICU) stay. Whether the disturbance of the microbial communities in these patients is extensive for other body sites, such as the skin, is largely unknown. The skin not only is the largest organ of the body but also serves as the first immune barrier against potential pathogens. This study characterized the skin microbiota on five different body sites in ICU patients at the time of admission. The observed disturbance of the bacterial communities might help to develop new strategies in the risk management of critically ill patients.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Enfermedad Crítica , Disbiosis/microbiología , Bacterias
5.
J Innate Immun ; 16(1): 105-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232720

RESUMEN

BACKGROUND: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY: This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES: The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamación , Receptores Depuradores de Clase E , Animales , Humanos , Ratones , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamación/inmunología , Lipoproteínas LDL/metabolismo , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA