Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 11(6): 423, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499495

RESUMEN

The mitochondrial flavoprotein ferredoxin reductase (FDXR) is required for biogenesis of iron-sulfur clusters and for steroidogenesis. Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, and an increasing number of disorders are associated with disruptions in the synthesis of Fe-S clusters. Our previous studies have demonstrated that hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans and mice, attributed in part to reduced function of the electron transport chain (ETC) as well as elevated production of reactive oxygen species (ROS). Inflammation and peripheral neuropathy are also hallmarks of this disease. In this paper, we demonstrate that FDXR mutation leads to significant optic transport defects that are likely to underlie optic atrophy, a major clinical presentation in FDXR patients, as well as a neurodegenerative loss of cells in the central nervous system (CNS). Molecular analysis indicates that FDXR mutation also leads to mitochondrial iron overload and an associated depolarization of the mitochondrial membrane, further supporting the hypothesis that FDXR mutations cause neurodegeneration by affecting FDXR's critical role in iron homeostasis.


Asunto(s)
Proteínas Mitocondriales/genética , Enfermedades del Nervio Óptico/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Animales , Atrofia , Axones/patología , Transporte Biológico , Línea Celular , Marcha , Humanos , Hierro/metabolismo , Potencial de la Membrana Mitocondrial , Ratones Mutantes , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Enfermedades del Nervio Óptico/patología , Enfermedades del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Neuronas Retinianas/metabolismo , Neuronas Retinianas/patología
2.
Nat Commun ; 8(1): 297, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819196

RESUMEN

Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs.


Asunto(s)
Señales (Psicología) , Hidrocarburos/metabolismo , Proteínas de Insectos/fisiología , Insectos/fisiología , Feromonas/metabolismo , Receptores Odorantes/fisiología , Estructuras Animales/química , Animales , Animales Modificados Genéticamente , Hormigas/genética , Hormigas/metabolismo , Hormigas/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Femenino , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Insectos/genética , Insectos/metabolismo , Masculino , Filogenia , Receptores Odorantes/clasificación , Receptores Odorantes/genética , Conducta Social
3.
Proc Natl Acad Sci U S A ; 114(32): 8586-8591, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28696298

RESUMEN

Animals use a variety of sensory modalities-including visual, acoustic, and chemical-to sense their environment and interact with both conspecifics and other species. Such communication is especially critical in eusocial insects such as honey bees and ants, where cooperation is critical for survival and reproductive success. Various classes of chemoreceptors have been hypothesized to play essential roles in the origin and evolution of eusociality in ants, through their functional roles in pheromone detection that characterizes reproductive status and colony membership. To better understand the molecular mechanisms by which chemoreceptors regulate social behaviors, we investigated the roles of a critical class of chemoreceptors, the odorant receptors (ORs), from the ponerine ant Harpegnathos saltator in detecting cuticular hydrocarbon pheromones. In light of the massive OR expansion in ants (∼400 genes per species), a representative survey based on phylogenetic and transcriptomic criteria was carried out across discrete odorant receptor subfamilies. Responses to several classes of semiochemicals are described, including cuticular hydrocarbons and mandibular gland components that act as H. saltator pheromones, and a range of more traditional general odorants. When viewed through the prism of caste-specific OR enrichment and distinctive OR subfamily odorant response profiles, our findings suggest that whereas individual HsOrs appear to be narrowly tuned, there is no apparent segregation of tuning responses within any discrete HsOr subfamily. Instead, the HsOR gene family as a whole responds to a broad array of compounds, including both cuticular hydrocarbons and general odorants that are likely to mediate distinct behaviors.


Asunto(s)
Hormigas , Proteínas de Insectos , Feromonas/metabolismo , Receptores Odorantes , Transcriptoma/fisiología , Animales , Hormigas/genética , Hormigas/metabolismo , Conducta Animal/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Conducta Social
4.
PLoS Genet ; 8(8): e1002930, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952454

RESUMEN

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs). Our phylogenetic analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many chemoreceptors that are differentially expressed between males and females and between species. We have also revealed an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H. saltator, and thus are targets for further functional characterization. Our findings represent an important advance toward understanding the molecular basis of social interactions and the differential chemical ecologies among ant species.


Asunto(s)
Hormigas , Feromonas , Receptores Ionotrópicos de Glutamato , Receptores Odorantes , Animales , Hormigas/genética , Hormigas/metabolismo , Hormigas/fisiología , Conducta Animal/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Feromonas/genética , Feromonas/metabolismo , Filogenia , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Caracteres Sexuales , Conducta Social , Especificidad de la Especie
5.
Gene Expr Patterns ; 8(7-8): 529-37, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18953701

RESUMEN

One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.


Asunto(s)
Cartilla de ADN/genética , Proteínas Proto-Oncogénicas/genética , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Proteínas Wnt/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Secuencia de Bases , Femenino , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Testículo/irrigación sanguínea
6.
Gene Expr Patterns ; 7(1-2): 82-92, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16844427

RESUMEN

One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.


Asunto(s)
Proteínas Proto-Oncogénicas/genética , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Proteínas Wnt/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Femenino , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Testículo/irrigación sanguínea , Proteína Wnt4 , Cromosoma X/genética , Cromosoma Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...