Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Syst ; 12(6): 670-687.e10, 2021 06 16.
Article En | MEDLINE | ID: mdl-34043964

Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.


Induced Pluripotent Stem Cells , Cell Differentiation/genetics , Humans , Myocytes, Cardiac/metabolism , Transcriptome/genetics
2.
Stroke ; 52(1): 274-283, 2021 01.
Article En | MEDLINE | ID: mdl-33161850

BACKGROUND AND PURPOSE: Ischemic injury triggers multiple pathological responses in the brain tissue, including spreading depolarizations across the cerebral cortex (cortical spreading depolarizations [CSD]). Microglia have been recently shown to play a significant role in the propagation of CSD. However, the intracellular responses of myeloid cells during ischemic stroke have not been investigated. METHODS: We have studied intracellular calcium activity in cortical microglia in the stroke model of the middle cerebral artery occlusion, using the murine Polr2a-based and Cre-dependent GCaMP5 and tdTomato reporter (PC::G5-tdT). High-speed 2-photon microscopy through cranial windows was employed to record signals from genetically encoded indicators of calcium. Inflammatory stimuli and pharmacological inhibition were used to modulate microglial calcium responses in the somatosensory cortex. RESULTS: In vivo imaging revealed periodical calcium activity in microglia during the hyperacute phase of ischemic stroke. This activity was more frequent during the first 6 hours after occlusion, but the amplitudes of calcium transients became larger at later time points. Consistent with CSD nature of these events, we reproducibly triggered comparable calcium transients with microinjections of potassium chloride (KCl) into adjacent cortical areas. Furthermore, lipopolysaccharide-induced peripheral inflammation, mimicking sterile inflammation during ischemic stroke, produced significantly greater microglial calcium transients during CSD. Finally, in vivo pharmacological analysis with CRAC (calcium release-activated channel) inhibitor CM-EX-137 demonstrated that CSD-associated microglial calcium transients after KCl microinjections are mediated at least in part by the CRAC mechanism. CONCLUSIONS: Our findings demonstrate that microglia participate in ischemic brain injury via previously undetected mechanisms, which may provide new avenues for therapeutic interventions.


Calcium Signaling , Ischemic Stroke/physiopathology , Microglia , Acute Disease , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Encephalitis/chemically induced , Encephalitis/physiopathology , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/physiopathology , Lipopolysaccharides , Mice , Microscopy, Fluorescence, Multiphoton , Myeloid Cells , Potassium Chloride/pharmacology , Somatosensory Cortex/physiopathology
3.
Methods Mol Biol ; 2034: 267-279, 2019.
Article En | MEDLINE | ID: mdl-31392691

Calcium signaling plays a significant role in microglial activation. Genetically encoded calcium indicators (GECI) have been widely used for calcium imaging studies in many brain cell types, including neurons, astrocytes, and oligodendrocytes. However, microglial calcium imaging approaches have been hampered by idiosyncrasies of their gene expression and malleable cell properties. The generation of PC::G5-tdT, a Polr2a locus-based conditional mouse reporter of calcium, facilitated the deployment of GECI in microglia. When crossed with the Iba1(Aif1)-IRES-Cre line, all brain microglia of the progeny are labeled with the calcium indicator variant GCaMP5G and the red fluorescent protein tdTomato. This reporter system has enabled in vivo studies of intracellular calcium in large microglial cell populations in cerebral pathologies such as ischemic stroke. In this chapter, we outline specific guidelines for genetic, surgical, imaging, and data analysis aspects of microglial calcium monitoring of the ischemic cortex following middle cerebral artery occlusion.


Brain Ischemia , Calcium-Binding Proteins , Gene Expression Regulation , Genes, Reporter , Luminescent Proteins , Microglia , Optical Imaging , Stroke , Animals , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/pathology , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Crosses, Genetic , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Stroke/genetics , Stroke/metabolism , Stroke/pathology , Red Fluorescent Protein
...