Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(3): e2305326, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907810

RESUMEN

Superconductivty has recently been induced in MXenes through surface modification. However, the previous reports have mostly been based on powders or cold-pressed pellets, with no known reports on the intrinsic superconsucting properties of MXenes at the nanoale. Here, it is developed a high-temperature atomic exchange process in NH3 atmosphere which induces superconductivity in either singleflakes or thin films of Nb2 CTx MXene. The exchange process between nitrogen atoms and fluorine, carbon, and oxygen atoms in the MXene lattice and related structural adjustments are studied using both experiments and density functional theory. Using either single-flake or thin-film devices, an anisotropic magnetic response of the 2D superconducting transformation has been successfully revealed. The anisotropic superconductivity is further demonstrated using superconducting thin films uniformly deposited over a 4 in. wafers, which opens up the possibility of scalable MXene-based superconducting devices.

2.
Nanotechnology ; 35(8)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37931315

RESUMEN

Graphene nanowalls (GNWs) can be described as extended nanosheets of graphitic carbon where the basal planes are perpendicular to a substrate. Generally, existing techniques to grow films of GNWsare based on plasma-enhanced chemical vapor deposition (PECVD) and the use of diverse substrate materials (Cu, Ni, C, etc) shaped as foils or filaments. Usually, patterned films rely on substrates priorly modified by costly cleanroom procedures. Hence, we report here the characterization, transfer and application of wafer-scale patterned GNWsfilms that were grown on Cu meshes using low-power direct-current PECVD. Reaching wall heights of ∼300 nm, mats of vertically-aligned carbon nanosheets covered square centimeter wire meshes substrates, replicating well the thread dimensions and the tens of micrometer-wide openings of the meshes. Contrastingly, the same growth conditions applied to Cu foils resulted in limited carbon deposition, mostly confined to the substrate edges. Based on the wet transfer procedure turbostratic and graphitic carbon domains co-exist in the GNWsmicrostructure. Interestingly, these nanoscaled patterned films were quite hydrophobic, being able to reverse the wetting behavior of SiO2surfaces. Finally, we show that the GNWscan also be used as the active material for C-on-Cu anodes of Li-ion battery systems.

3.
Materials (Basel) ; 15(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744200

RESUMEN

Graphene has exceptional electronic properties, such as zero band gap, massless carriers, and high mobility. These exotic carrier properties enable the design and development of unique graphene devices. However, traditional semiconductor solvers based on drift-diffusion equations are not capable of modeling and simulating the charge distribution and transport in graphene, accurately, to its full extent. The effects of charge inertia, viscosity, collective charge movement, contact doping, etc., cannot be accounted for by the conventional Poisson-drift-diffusion models, due to the underlying assumptions and simplifications. Therefore, this article proposes two mathematical models to analyze and simulate graphene-based devices. The first model is based on a modified nonlinear Poisson's equation, which solves for the Fermi level and charge distribution electrostatically on graphene, by considering gating and contact doping. The second proposed solver focuses on the transport of the carriers by solving a hydrodynamic model. Furthermore, this model is applied to a Tesla-valve structure, where the viscosity and collective motion of the carriers play an important role, giving rise to rectification. These two models allow us to model unique electronic properties of graphene that could be paramount for the design of future graphene devices.

4.
Adv Mater ; 34(4): e2105190, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34761821

RESUMEN

The ability to control lattice orientation is often an essential requirement in the growth of both 2D van der Waals (vdW) layered and nonlayered thin films. Here, a unique and universal phenomenon termed "lattice orientation heredity" (LOH) is reported. LOH enables product films (including 2D-layered materials) to inherit the lattice orientation from reactant films in a chemical conversion process, excluding the requirement on the substrate lattice order. The process universality is demonstrated by investigating the lattice transformations in the carbonization, nitridation, and sulfurization of epitaxial MoO2 , ZnO, and In2 O3 thin films. Their resultant compounds all inherit the mono-oriented crystal feature from their precursor oxides, including 2D vdW-layered semiconductors (e.g., MoS2 ), metallic films (e.g., MXene-like Mo2 C and MoN), wide-bandgap semiconductors (e.g., hexagonal ZnS), and ferroelectric semiconductors (e.g., In2 S3 ). Using LOH-grown MoN as a seeding layer, mono-oriented GaN is achieved on an amorphous quartz substrate. The LOH process presents a universal strategy capable of growing epitaxial thin films (including 2D vdW-layered materials) not only on single-crystalline but also on noncrystalline substrates.

5.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34947584

RESUMEN

Being environmentally friendly, safe and easy to handle, aqueous electrolytes are of particular interest for next-generation electrochemical energy storage devices. When coupled with an abundant, recyclable and low-cost electrode material such as aluminum, the promise of a green and economically sustainable battery system has extraordinary appeal. In this work, we study the interaction of an aqueous electrolyte with an aluminum plate anode and various graphitic cathodes. Upon establishing the boundary conditions for optimal electrolyte performance, we find that a mesoporous reduced graphene oxide powder constitutes a better cathode material option than graphite flakes.

6.
Nano Lett ; 21(11): 4539-4545, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34006114

RESUMEN

We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal-insulator-metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O- and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.

7.
Chem Asian J ; 16(11): 1466-1474, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848403

RESUMEN

In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a "showerhead" cold-wall type, whereas the other represented the popular "tubular" hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2 -scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.

8.
ACS Omega ; 4(20): 18725-18733, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737834

RESUMEN

Redox species such as transition metals may, unknowingly, integrate carbon materials that are produced (or supplied) for the assembling of electrodes in batteries, supercapacitors, and fuel cells. The extent to which these species alter the electrochemical profile of carbons and affect the performance and/or degradation of energy storage systems is still not fully appreciated. Alkaline oxidation (or fusion) is a promising approach to disintegrate nanocarbons for the subsequent study of their chemical composition by routine analytical tools. In this work, three commercial carbon powders, relevant for electrochemical applications and bearing varied textural orientation (point, radial, and planar), were selected to evaluate the versatility of fusion as a pretreatment process for elemental analysis. Additionally, the interaction of the flux, a lithium borate salt, with the carbons was elucidated by examining their post-fusion residues. The degree of structural degradation varied and, generally, the doping with Li and/or B (whether substitutional or interstitial) was low to nonexistent. With future developments, fusion could become a relevant pretreatment method to analyze the composition of carbon materials, even when complex mixtures (e.g., cycled battery electrodes) and larger batch scales are considered.

9.
RSC Adv ; 9(11): 6299-6309, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35517263

RESUMEN

Nanoscaled spinel-structured ferrites bear promise as next-generation contrast agents for magnetic resonance imaging. However, the small size of the particles commonly leads to colloidal instability under physiological conditions. To circumvent this problem, supports onto which the dispersed nanoparticles can be anchored have been proposed. Amongst these, flakes of graphene have shown interesting performance but it remains unknown if and how their surface texture and chemistry affect the magnetic properties and relaxation time (T 2) of the ferrite nanoparticles. Here, it is shown that the type of graphene oxide (GO) precursor, used to make composites of cobalt ferrite (CoFe2O4) and reduced GO, influences greatly not just the T 2 but also the average size, dispersion and magnetic behaviour of the grafted nanoparticles. Accordingly, and without compromising biocompatibility, a judicious choice of the initial GO precursor can result in the doubling of the proton relaxivity rate in this system.

10.
Small ; 14(51): e1803584, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30358077

RESUMEN

Research in the field of aluminum batteries has focused heavily on electrodes made of carbonaceous materials. Still, the capacities reported for these multivalent systems remain stubbornly low. It is believed that a high structural quality of graphitic carbons and/or specific surface areas of >1000 m2 g-1 are key factors to obtain optimal performance and cycling stability. Here an aluminum chloride battery is presented in which reduced graphene oxide (RGO) powder, dried under supercritical conditions, is used as the active cathode material and niobium foil as the current collector. With a specific surface area of just 364 m2 g-1 , the RGO enables a gravimetric capacity of 171 mAh g-1 at 100 mA g-1 and remarkable stability over a wide range of current densities (<15% decrease over 100 cycles in the interval 100-20000 mA g-1 ). These properties, up to now achieved only with much larger surface area materials, result from the cathode's tailored mesoporosity. The 20 nm wide mesopores facilitate the movement of the chloroaluminate ions through the RGO, effectively minimizing the inactive mass content of the electrode. This more than compensates for the ordinary micropore volume of the graphene powder.

11.
Opt Express ; 19(23): 23140-52, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109194

RESUMEN

A Scanning Nearfield Optical Microscope (SNOM) tip with partial metallic cladding is presented. For its design, a very demanding 2D eigenvalue analysis of an optical waveguide with material and radiation losses is carried out by the Multiple Multipole Program (MMP) and by the Finite Element Method (FEM). These simulations require some special tricks that are outlined. The computed 2D MMP and FEM results are compared and discussed. This 2D analysis is followed by a full 3D FEM analysis of the SNOM tip. The obtained 3D results confirm the corresponding 2D predictions. Important conclusions regarding the guiding capabilities of the chosen structure and the efficiency of the applied numerical methods are presented.

12.
J Opt Soc Am A Opt Image Sci Vis ; 24(4): 1177-88, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17361306

RESUMEN

Seven different stochastic binary optimizers--based on the concepts of genetic algorithms and evolutionary strategies--are developed, applied to determine defect locations in several photonic crystal structures that serve as test cases, and compared by extensive statistical analysis. In addition to the stochastic optimizers, a quasi-deterministic optimizer based on an algorithm inspired by hill-climbing algorithms was implemented. The test cases include the prominent 90 degrees photonic crystal waveguide bend and a photonic crystal power divider. The analysis of the results shows that many different photonic crystal structures with high transmission may be found for any operating frequency. All of the eight optimizers outperform standard codes-because they maintain an incomplete fitness table-and find the global optima with a high probability even when the number of fitness evaluations is much smaller than the number of potential solutions contained in the discrete search space. Based on the incomplete fitness table, an algorithm to estimate bit-fitness values is presented. The bit-fitness values are then used to improve the performance of some algorithms. The four best algorithms-an extended microgenetic algorithm, two mutation-based algorithms, and the quasi-deterministic algorithm inspired by hill-climbing algorithms-are considered to be of high value for the optimization of defects in photonic crystals and for similar binary optimization problems.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Luz , Cristales Líquidos/química , Fotoquímica/métodos , Dispersión de Radiación
13.
J Opt Soc Am A Opt Image Sci Vis ; 21(11): 2223-32, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15535381

RESUMEN

We report on the numerical structural optimization of two-dimensional photonic crystal (PhC) power dividers by using two different classes of optimization algorithms, namely, a modified truncated Newton (TN) gradient search as deterministic local optimization scheme and an evolutionary optimization representing the probabilistic global search strategies. Because of the severe accuracy requirements during optimization, the proper PhC device has been simulated by using the multiple-multipole program that is contained in the MaX-1 software package. With both optimizer classes, we found reliable and promising solutions that provide vanishing power reflection and perfect power balance at any specified frequency within the photonic bandgap. This outcome is astonishing in light of the discrete nature inherent in the underlying PhC structure, especially when the optimizer is allowed to intervene only within a very small volume of the device. Even under such limiting constraints structural optimization is not only feasible but has proven to be highly successful.

14.
Opt Express ; 11(6): 566-71, 2003 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19461766

RESUMEN

We propose a general design methodology for photonic crystal (PhC) diplexers, which is carried out along a filtering T-junction. The diplexer operation is investigated while carefully analyzing the dispersion relations of the three different waveguide channels. All simulations are carried out using the multiple multipole method (MMP), which offers perfect excitation and matching conditions for all waveguide ports involved. The resulting diplexer is highly compact (it covers an area of 13 x 9 lattice constants) and simple when compared to other PhC diplexer designs.

15.
Opt Express ; 11(12): 1378-84, 2003 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19466008

RESUMEN

We perform a simple sensitivity analysis of a W1 waveguide bend in a photonic crystal (PhC) where we use the information obtained to optimize the PhC bend's frequency response. Within a single optimization step we already achieve very low power reflection coefficients over almost the entire frequency range of the photonic bandgap (PBG), i.e., an achromatic bend. A further analysis shows that there is a single critical rod in the optimized bend structure that exhibits an extraordinary high sensitivity at a given frequency. Hence power reflection becomes tunable from 0 % up to 100 % involving only small changes in the critical rod's properties. This opens the door to novel topologies for compact switches and sensor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...