Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(13): 3020-3030.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38917797

RESUMEN

Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
2.
Elife ; 122024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896460

RESUMEN

The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo
3.
Methods Mol Biol ; 2690: 193-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450149

RESUMEN

Interactions between extracellular domains (ECDs) are crucial for many physiological processes in the cell, most importantly perception of its environment. However, studying these often-transient interactions can be challenging. Here we describe a method that allows for in vitro detection of extracellular domain interactions through an oligomerization-based cell surface interaction (CSI) assay. In a CSI, bait- and prey-tagged proteins are produced and secreted by Drosophila S2 cells to ensure proper folding and post-translational modifications. Subsequently, Bait (FC fragment) and Prey (pentamer domain and alkaline phosphatase) tags allow the detection of interactions in protein A-coated 96 wells plates through a colorimetric readout. Due to the easy detection of interactions this approach can be used for high-throughput screening and mapping of extracellular interaction networks.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Comunicación Celular
4.
Science ; 370(6516): 550-557, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122378

RESUMEN

Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.


Asunto(s)
Arabidopsis/enzimología , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Factores de Transcripción/metabolismo
5.
Science ; 364(6436): 178-181, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30975887

RESUMEN

In plants, cell-surface immune receptors sense molecular non-self-signatures. Lipid A of Gram-negative bacterial lipopolysaccharide is considered such a non-self-signature. The receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) mediates plant immune responses to Pseudomonas and Xanthomonas but not enterobacterial lipid A or lipopolysaccharide preparations. Here, we demonstrate that synthetic and bacterial lipopolysaccharide-copurified medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) metabolites elicit LORE-dependent immunity. The mc-3-OH-FAs are sensed in a chain length- and hydroxylation-specific manner, with free (R)-3-hydroxydecanoic acid [(R)-3-OH-C10:0] representing the strongest immune elicitor. By contrast, bacterial compounds comprising mc-3-OH-acyl building blocks but devoid of free mc-3-OH-FAs-including lipid A or lipopolysaccharide, rhamnolipids, lipopeptides, and acyl-homoserine-lactones-do not trigger LORE-dependent responses. Hence, plants sense low-complexity bacterial metabolites to trigger immune responses.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Ácidos Decanoicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Acil-Butirolactonas/metabolismo , Ácidos Decanoicos/química , Glucolípidos/metabolismo , Lípido A/metabolismo , Lipopéptidos/metabolismo
6.
Sci Data ; 6: 190025, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30806640

RESUMEN

Plants use surface receptors to perceive information about many aspects of their local environment. These receptors physically interact to form both steady state and signalling competent complexes. The signalling events downstream of receptor activation impact both plant developmental and immune responses. Here, we present a comprehensive study of the physical interactions between the extracellular domains of leucine-rich repeat receptor kinases (LRR-RKs) in Arabidopsis. Using a sensitized assay, we tested reciprocal interactions among 200 of the 225 Arabidopsis LRR-RKs for a total search space of 40,000 interactions. Applying a stringent statistical cut-off and requiring that interactions performed well in both bait-prey and prey-bait orientations resulted in a high-confidence set of 567 bidirectional interactions. Additionally, we identified a total of 2,586 unidirectional interactions, which passed our stringent statistical cut-off in only one orientation. These datasets will guide further investigation into the regulatory roles of LRR-RKs in plant developmental and immune signalling decisions.


Asunto(s)
Proteínas de Arabidopsis , Mapeo de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas , Proteínas de Arabidopsis/química , Proteínas Repetidas Ricas en Leucina , Dominios Proteicos , Mapeo de Interacción de Proteínas/métodos , Proteínas Quinasas/fisiología
7.
Nature ; 561(7722): E8, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29973716

RESUMEN

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

8.
Int J Mol Sci ; 19(3)2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29538317

RESUMEN

Shoot and root apical meristems (SAM and RAM, respectively) are crucial to provide cells for growth and organogenesis and therefore need to be maintained throughout the life of a plant. However, plants lacking the mitochondrial protease AtFTSH4 exhibit an intriguing phenotype of precocious cessation of growth at both the shoot and root apices when grown at elevated temperatures. This is due to the accumulation of internal oxidative stress and progressive mitochondria dysfunction. To explore the impacts of the internal oxidative stress on SAM and RAM functioning, we study the expression of selected meristem-specific (STM, CLV3, WOX5) and cell cycle-related (e.g., CYCB1, CYCD3;1) genes at the level of the promoter activity and/or transcript abundance in wild-type and loss-of-function ftsh4-1 mutant plants grown at 30 °C. In addition, we monitor cell cycle progression directly in apical meristems and analyze the responsiveness of SAM and RAM to plant hormones. We show that growth arrest in the ftsh4-1 mutant is caused by cell cycle dysregulation in addition to the loss of stem cell identity. Both the SAM and RAM gradually lose their proliferative activity, but with different timing relative to CYCB1 transcriptional activity (a marker of G2-M transition), which cannot be compensated by exogenous hormones.


Asunto(s)
Proteínas de Arabidopsis/genética , Proliferación Celular , Meristema/genética , Metaloproteasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Ciclina B/metabolismo , Meristema/crecimiento & desarrollo , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
9.
Nature ; 553(7688): 342-346, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29320478

RESUMEN

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Leucina/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Arabidopsis/microbiología , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
10.
Science ; 355(6322): 280-284, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104888

RESUMEN

The root endodermis forms its extracellular diffusion barrier by developing ringlike impregnations called Casparian strips. A factor responsible for their establishment is the SCHENGEN3/GASSHO1 (SGN3/GSO1) receptor-like kinase. Its loss of function causes discontinuous Casparian strips. SGN3 also mediates endodermal overlignification of other Casparian strip mutants. Yet, without ligand, SGN3 function remained elusive. Here we report that schengen2 (sgn2) is defective in an enzyme sulfating peptide ligands. On the basis of this observation, we identified two stele-expressed peptides (CASPARIAN STRIP INTEGRITY FACTORS, CIF1/2) that complement sgn2 at nanomolar concentrations and induce Casparian strip mislocalization as well as overlignification-all of which depend on SGN3. Direct peptide binding to recombinant SGN3 identifies these peptides as SGN3 ligands. We speculate that CIF1/2-SGN3 is part of a barrier surveillance system, evolved to guarantee effective sealing of the supracellular Casparian strip network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Sulfotransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Difusión , Ligandos , Péptidos/metabolismo , Raíces de Plantas/genética , Unión Proteica , Proteínas Quinasas/genética , Sulfotransferasas/genética
11.
Science ; 355(6322): 287-289, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104890

RESUMEN

In plants, perception of invading pathogens involves cell-surface immune receptor kinases. Here, we report that the Arabidopsis SITE-1 PROTEASE (S1P) cleaves endogenous RAPID ALKALINIZATION FACTOR (RALF) propeptides to inhibit plant immunity. This inhibition is mediated by the malectin-like receptor kinase FERONIA (FER), which otherwise facilitates the ligand-induced complex formation of the immune receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2) with their co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) to initiate immune signaling. We show that FER acts as a RALF-regulated scaffold that modulates receptor kinase complex assembly. A similar scaffolding mechanism may underlie FER function in other signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Hormonas Peptídicas/metabolismo , Fosfotransferasas/metabolismo , Inmunidad de la Planta , Proproteína Convertasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Receptores de Reconocimiento de Patrones/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA