RESUMEN
For the first time, HF-EPR (94.5 GHz) spectroscopy has been used to determine crystal field parameters in chromium(III) coordination compounds. The large zero-field splitting parameters of the dark-green photochromic trans-RSSR-[CrCl(2)(cyclam)](2)ZnCl(4), 1, the red-purple trans-RSSR-[CrCl(2)(cyclam)]Cl, 2, and the red-purple trans-RSSR-[CrCl(2)(cyclam)]Cl.4H(2)O.0.5HCl, 3, where cyclam = 1,4,8,11-tetraazacyclotetradecane, have been obtained. A full analysis of EPR spectra at 94.5 GHz of diluted complexes 1, 2 and 3 at 300 K revealed that they are extremely sensitive to D and E values. The rhombic distortion was precisely determined for each compound. For 1, g= 2.01, D=-0.305 cm(-1), E= 0.041 cm(-1) and lambda=|E/D|= 0.1396; for 2, g= 2.01; D=-0.348 cm(-1), E= 0.042 cm(-1) and lambda=|E/D|= 0.1206 and for 3, g= 1.99, D=-0.320 cm(-1), E= 0.041 cm(-1) and ambda=|E/D|= 0.1281. The EPR study at 94.5 GHz at 10 K allowed us to confirm the sign of the D value for all compounds. These data indicate that at room temperature the crystal field is mainly rhombic and as the temperature decreases, the rhombicity of the D tensor increases slightly. These found differences between 1, 2 and 3 allowed us to establish the importance of the intermolecular interactions in the solid state due to different hydrogen bonding networks in their crystalline arrangement.