Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(12): 4781-4801, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38861396

RESUMEN

In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θab,H between the vector r⃗ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.


Asunto(s)
Modelos Moleculares , Rotación , Anisotropía , Espectroscopía de Resonancia Magnética/métodos
2.
J Chem Inf Model ; 62(24): 6704-6714, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816656

RESUMEN

Molecular dynamics (MD) simulations have been used to characterize the effects of backbone N-amination of residues in a model ß-hairpin peptide. This modification is of considerable interest as N-aminated peptides have been shown to inhibit amyloid-type aggregation. Six derivatives of the ß-hairpin peptide, which contain one, two, or four N-aminated residues, have been studied. For each peptide 100 ns MD simulations starting from the folded ß-hairpin structure were performed. The effects of the N-amination prove to be very sequence dependent. N-Amination of a residue involved in interstrand hydrogen bonding (Val3) leads to unfolding of the ß-hairpin, whereas N-amination of a residue toward the C-terminus (Leu11) gives fraying at the termini of the peptide. In the other derivatives the peptide remains folded, with increasing levels of N-amination reducing the right-handed twist of the ß-hairpin and favoring population of a type II' rather than a type I' ß-turn. MD simulations (100 ns) have also been run for each peptide starting from an unfolded extended chain. Here, the peptide with four N-aminated residues shows the most folding into the ß-hairpin (34%). Analysis of the simulations shows that N-amination favors the population of ß (φ, ψ) conformations by the preceding residue due to, at least in part, a network of weak NH2(i)-CO(i) and NH2(i)-CO(i-2) hydrogen bonds. It also leads to a reduction of misfolding because of changes in the hydrogen-bonding potential. Both of these features help funnel the peptide to the folded ß-hairpin structure. The conformational insights provided through this work give a firm foundation for the design of N-aminated peptide inhibitors for modulating protein-protein interactions and aggregation.


Asunto(s)
Péptidos , Pliegue de Proteína , Enlace de Hidrógeno , Secuencia de Aminoácidos , Aminación , Estructura Secundaria de Proteína , Péptidos/química
3.
J Phys Chem B ; 126(21): 3867-3888, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35588494

RESUMEN

A method for structure refinement of molecules based on residual dipolar coupling (RDC) data is proposed. It calculates RDC values using rotational and molecule-internal configurational sampling instead of the common refinement procedure that is based on the approximation of the nonuniform rotational distribution of the molecule by a single alignment tensor representing the average nonuniformity of this distribution. Using rotational sampling, as is occurring in the experiment leading to observable RDCs, the method stays close to the experiment. It avoids the use of an alignment tensor and thus the assumption that the overall rotation of the molecule is decoupled from its internal motions and that the molecule be rigid. Two simple molecules, two-united-atomic ethane and a cyclooctane molecule with eight side chains, containing 24 united atoms, serve as the so-called "toy model" test systems. The method demonstrates the influence of molecular flexibility and force-field deficiencies on the outcome of structure refinement based on RDCs. For a molecule of a given size (number of atoms Nat), there must be a sufficiently large number NRDC of measured RDC values available to allow the restraining forces to bias the overall orientation distribution of the molecule. If the ratio NRDC/Nat gets too small, the RDC-restraining forces will either not be strong enough to change the overall rotational direction of the molecule such that the target RDC values are approximated well or will be so strong that they induce a local deformation of the molecule. In the latter case, the size or inertia of the molecule hinders a restraining-induced overall rotation and the internal structure of the molecule is not strong enough to avoid local deformation due to the restraining forces.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular/métodos
4.
Eur Biophys J ; 51(3): 265-282, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35303138

RESUMEN

In protein simulation or structure refinement based on values of observable quantities measured in (aqueous) solution, solvent (water) molecules may be explicitly treated, omitted, or represented by a potential of mean-solvation-force term, depending on protein coordinates only, in the force field used. These three approaches are compared for hen egg white lysozyme (HEWL). This 129-residue non-spherical protein contains a variety of secondary-structure elements, and ample experimental data are available: 1630 atom-atom Nuclear Overhauser Enhancement (NOE) upper distance bounds, 213 3 J-couplings and 200 S2 order parameters. These data are used to compare the performance of the three approaches. It is found that a molecular dynamics (MD) simulation in explicit water approximates the experimental data much better than stochastic dynamics (SD) simulation in vacuo without or with a solvent-accessible-surface-area (SASA) implicit-solvation term added to the force field. This is due to the missing energetic and entropic contributions and hydrogen-bonding capacities of the water molecules and the missing dielectric screening effect of this high-permittivity solvent. Omission of explicit water molecules leads to compaction of the protein, an increased internal strain, distortion of exposed loop and turn regions and excessive intra-protein hydrogen bonding. As a consequence, the conformation and dynamics of groups on the surface of the protein, which may play a key role in protein-protein interactions or ligand or substrate binding, may be incorrectly modelled. It is thus recommended to include water molecules explicitly in structure refinement of proteins in aqueous solution based on nuclear magnetic resonance (NMR) or other experimentally measured data.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Simulación por Computador , Muramidasa/química , Proteínas/química , Solventes/química , Agua
5.
Biomolecules ; 11(5)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926076

RESUMEN

Multiple crystal structures of the homo-trimeric protein disulphide isomerase PmScsC reveal that the peptide which links the trimerization stalk and catalytic domain can adopt helical, ß-strand and loop conformations. This region has been called a 'shape-shifter' peptide. Characterisation of this peptide using NMR experiments and MD simulations has shown that it is essentially disordered in solution. Analysis of the PmScsC crystal structures identifies the role of intermolecular contacts, within an assembly of protein molecules, in stabilising the different linker peptide conformations. These context-dependent conformational properties may be important functionally, allowing for the binding and disulphide shuffling of a variety of protein substrates to PmScsC. They also have a relevance for our understanding of protein aggregation and misfolding showing how intermolecular quaternary interactions can lead to ß-sheet formation by a sequence that in other contexts adopts a helical structure. This 'shape-shifting' peptide region within PmScsC is reminiscent of one-to-many molecular recognition features (MoRFs) found in intrinsically disordered proteins which are able to adopt different conformations when they fold upon binding to their protein partners.


Asunto(s)
Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/ultraestructura , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Dominio Catalítico , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/ultraestructura , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos , Proteína Disulfuro Isomerasas/metabolismo , Dominios Proteicos , Proteus mirabilis/enzimología , Proteus mirabilis/metabolismo
6.
J Biomol NMR ; 75(1): 39-70, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33492494

RESUMEN

Values of 3J-couplings as obtained from NMR experiments on proteins cannot easily be used to determine protein structure due to the difficulty of accounting for the high sensitivity of intermediate 3J-coupling values (4-8 Hz) to the averaging period that must cover the conformational variability of the torsional angle related to the 3J-coupling, and due to the difficulty of handling the multiple-valued character of the inverse Karplus relation between torsional angle and 3J-coupling. Both problems can be solved by using 3J-coupling time-averaging local-elevation restraining MD simulation. Application to the protein hen egg white lysozyme using 213 backbone and side-chain 3J-coupling restraints shows that a conformational ensemble compatible with the experimental data can be obtained using this technique, and that accounting for averaging and the ability of the algorithm to escape from local minima for the torsional angle induced by the Karplus relation, are essential for a comprehensive use of 3J-coupling data in protein structure determination.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas/química , Algoritmos , Cristalografía por Rayos X , Estructura Molecular , Muramidasa , Resonancia Magnética Nuclear Biomolecular/métodos , Relación Estructura-Actividad
7.
Biomol NMR Assign ; 15(1): 143-151, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423170

RESUMEN

E. coli nitroreductase NfsB (also called NfnB) has been studied extensively, largely due to its potential for cancer gene therapy. A homodimeric flavoprotein of 216 residues, it catalyses the reduction of nitroaromatics to cytotoxic hydroxylamines by NADH and NADPH and also the reduction of quinones to hydroxyquinones. Its role in vivo is not known but it is postulated to be involved in reducing oxidative stress. The crystal structures of the wild type protein and several homologues have been determined in the absence and presence of ligands, including nicotinate as a mimic of the headpiece of the nicotinamide cofactors. There is little effect on the overall structure of the protein on binding ligands, but, from the B factors, there appears to be a decrease in mobility of 2 helices near the active site. As a first step towards examining the dynamics of the protein in solution with and without ligand, we have assigned the backbone 13C, 15N, and 1HN resonances of NfsB and examined the effect of the binding of nicotinate on the amide 15N, and 1HN shifts.


Asunto(s)
Proteínas de Escherichia coli , Resonancia Magnética Nuclear Biomolecular , Dominio Catalítico , Nitrorreductasas
8.
Chembiochem ; 22(6): 1049-1064, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33146424

RESUMEN

Values of S2CH and S2NH order parameters derived from NMR relaxation measurements on proteins cannot be used straightforwardly to determine protein structure because they cannot be related to a single protein structure, but are defined in terms of an average over a conformational ensemble. Molecular dynamics simulation can generate a conformational ensemble and thus can be used to restrain S2CH and S2NH order parameters towards experimentally derived target values S2CH (exp) and S2NH (exp). Application of S2CH and S2NH order-parameter restraining MD simulation to bond vectors in 63 side chains of the protein hen egg white lysozyme using 51 S2CH (exp) target values and 28 S2NH (exp) target values shows that a conformational ensemble compatible with the experimentally derived data can be obtained by using this technique. It is observed that S2CH order-parameter restraining of C-H bonds in methyl groups is less reliable than S2NH order-parameter restraining because of the possibly less valid assumptions and approximations used to derive experimental S2CH (exp) values from NMR relaxation measurements and the necessity to adopt the assumption of uniform rotational motion of methyl C-H bonds around their symmetry axis and of the independence of these motions from each other. The restrained simulations demonstrate that side chains on the protein surface are highly dynamic. Any hydrogen bonds they form and that appear in any of four different crystal structures, are fluctuating with short lifetimes in solution.


Asunto(s)
Muramidasa/química , Resonancia Magnética Nuclear Biomolecular , Animales , Pollos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
Proteins ; 88(1): 82-93, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294851

RESUMEN

The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E'F' sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1 HN and 15 N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.


Asunto(s)
Bacteriófago lambda/enzimología , Muramidasa/antagonistas & inhibidores , Muramidasa/metabolismo , Oligosacáridos/metabolismo , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Dominio Catalítico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Muramidasa/química , Resonancia Magnética Nuclear Biomolecular , Oligosacáridos/química , Oligosacáridos/farmacología , Unión Proteica , Conformación Proteica/efectos de los fármacos
10.
Chemphyschem ; 20(11): 1527-1537, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30920077

RESUMEN

A powerful conformational searching and enhanced sampling simulation method, and unbiased molecular dynamics simulations have been used along with NMR spectroscopic observables to provide a detailed structural view of O-glycosylation. For four model systems, the force-field parameters can accurately predict experimental NMR observables (J couplings and NOE's). This enables us to derive conclusions based on the generated ensembles, in which O-glycosylation affects the peptide backbone conformation by forcing it towards to an extended conformation. An exception is described for ß-GalNAc-Thr where the α content is increased and stabilized via hydrogen bonding between the sugar and the peptide backbone, which was not observed in the rest of the studied systems. These observations might offer an explanation for the evolutionary preference of α-linked GalNAc glycosylation instead of a ß link.


Asunto(s)
Glicopéptidos/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Glicosilación , Enlace de Hidrógeno , Conformación Proteica , Termodinámica
11.
Biochem J ; 476(5): 809-826, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30782970

RESUMEN

SPH (self-incompatibility protein homologue) proteins are a large family of small, disulfide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy (Papaver rhoeas), but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of Escherichia coli, we expressed one member of this family, SPH15 from Arabidopsis thaliana, as a folded thioredoxin fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. This showed that SPH15 is monomeric and temperature stable, with a ß-sandwich structure. The four strands in each sheet have the same topology as the unrelated proteins: human transthyretin, bacterial TssJ and pneumolysin, with no discernible sequence similarity. The NMR-derived structure was compared with a de novo model, made using a new deep learning algorithm based on co-evolution/correlated mutations, DeepCDPred, validating the method. The DeepCDPred de novo method and homology modelling to SPH15 were then both used to derive models of the 3D structure of the three known PrsS proteins from P. rhoeas, which have only 15-18% sequence homology to SPH15. The DeepCDPred method gave models with lower discreet optimised protein energy scores than the homology models. Three loops at one end of the poppy structures are postulated to interact with their respective pollen receptors to instigate programmed cell death in pollen tubes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína
12.
Biomol NMR Assign ; 13(1): 67-70, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30284185

RESUMEN

The SPH proteins are a large family of small, disulphide-bonded, secreted proteins, originally found to be involved in the self-incompatibility response in the field poppy (Papaver rhoeas). They are now known to be widely distributed in plants, many containing multiple members of this protein family. Apart from the PrsS proteins in Papaver the function of these proteins is unknown but they are thought to be involved in plant development and cell signalling. There has been no structural study of SPH proteins to date. Using the Origami strain of E. coli, we cloned and expressed one member of this family, SPH15 from Arabidopsis thaliana, as a folded thioredoxin-fusion protein, purified it from the cytosol, and cleaved it to obtain the secreted protein. We here report the assignment of the NMR spectra of SPH15, which contains 112 residues plus three N-terminal amino acids from the vector. The secondary structure propensity from TALOS+ shows that it contains eight beta strands and connecting loops. This is largely in agreement with predictions from the amino acid sequence, which show an additional C-terminal strand.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Resonancia Magnética Nuclear Biomolecular , Autoincompatibilidad en las Plantas con Flores , Homología de Secuencia de Aminoácido , Isótopos de Carbono , Isótopos de Nitrógeno , Estructura Secundaria de Proteína , Protones
13.
Angew Chem Int Ed Engl ; 57(4): 884-902, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-28682472

RESUMEN

Computer simulation of molecular systems enables structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic, or supra-molecular level. To interpret results of such simulations appropriately, the quality of the calculated properties must be evaluated. This depends on the way the simulations are performed and on the way they are validated by comparison to values Qexp of experimentally observable quantities Q. One must consider 1) the accuracy of Qexp , 2) the accuracy of the function Q(rN ) used to calculate a Q-value based on a molecular configuration rN of N particles, 3) the sensitivity of the function Q(rN ) to the configuration rN , 4) the relative time scales of the simulation and experiment, 5) the degree to which the calculated and experimental properties are equivalent, and 6) the degree to which the system simulated matches the experimental conditions. Experimental data is limited in scope and generally corresponds to averages over both time and space. A critical analysis of the various factors influencing the apparent degree of (dis)agreement between simulations and experiment is presented and illustrated using examples from the literature. What can be done to enhance the validation of molecular simulation is also discussed.

14.
J Phys Chem B ; 121(29): 7055-7063, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28640620

RESUMEN

The derivation of protein structure from values of observable quantities measured in NMR experiments is a rather nontrivial task due to (i) the limited number of data compared to degrees of freedom of a protein, (ii) the uncertainty inherent to the function connecting an observable quantity to molecular structure, (iii) the finite quality of biomolecular models and force fields used in structure refinement, and (iv) the conformational freedom of a protein in aqueous solution, which requires extensive conformational sampling and appropriate conformational averaging when calculating or restraining to sets of NMR data. The protein interleukin-4 (IL-4) has been taken as a test case using NOE distances, S2 order parameters, and 3J-couplings as test data and the former two types of data as restraints. It is shown that, by combining sets of different, complementary NMR data as restraints in MD simulations, inconsistencies in the data or flaws in the model and procedures used to derive protein structure from NMR data can be detected. This leads to an improved structural interpretation of such data particularly in more mobile loop regions.


Asunto(s)
Interleucina-4/química , Simulación de Dinámica Molecular , Humanos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular
15.
Chemistry ; 23(40): 9585-9591, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28503764

RESUMEN

At low pH, human growth hormone (hGH) adopts a partially folded state, in which the native helices are maintained, but the long loop regions and side-chain packing become disordered. Some of the S2 order parameters for backbone N-H vectors derived from NMR relaxation measurements on hGH at low pH initially seem contradictory. Three isolated residues (15, 20, and 171) in helices A and D exhibit low order parameter values (<0.5) indicating flexibility, whereas residue 143 in the centre of a long flexible loop region has a high order parameter (0.82). Using S2 order parameter restraining MD simulations, this paradox has been resolved. Low S2 values in helices are due to the presence of a mixture of 310 -helical and α-helical hydrogen bonds. High S2 values in relatively disordered parts of a protein may be due to fluctuating networks of hydrogen bonds between the backbone and the side chains, which restrict the motion of N-H bond vectors.


Asunto(s)
Hormona de Crecimiento Humana/química , Simulación de Dinámica Molecular , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Secundaria de Proteína
16.
Angew Chem Int Ed Engl ; 55(52): 15990-16010, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-27862777

RESUMEN

During the past half century, the number and accuracy of experimental techniques that can deliver values of observables for biomolecular systems have been steadily increasing. The conversion of a measured value Qexp of an observable quantity Q into structural information is, however, a task beset with theoretical and practical problems: 1) insufficient or inaccurate values of Qexp , 2) inaccuracies in the function Q(r→) used to relate the quantity Q to structure r→ , 3) how to account for the averaging inherent in the measurement of Qexp , 4) how to handle the possible multiple-valuedness of the inverse r→(Q) of the function Q(r→) , to mention a few. These apply to a variety of observable quantities Q and measurement techniques such as X-ray and neutron diffraction, small-angle and wide-angle X-ray scattering, free-electron laser imaging, cryo-electron microscopy, nuclear magnetic resonance, electron paramagnetic resonance, infrared and Raman spectroscopy, circular dichroism, Förster resonance energy transfer, atomic force microscopy and ion-mobility mass spectrometry. The process of deriving structural information from measured data is reviewed with an eye to non-experts and newcomers in the field using examples from the literature of the effect of the various choices and approximations involved in the process. A list of choices to be avoided is provided.


Asunto(s)
Aminoácidos/química , Oligopéptidos/química , Proteínas/química , Simulación de Dinámica Molecular , Estructura Molecular
17.
J Biomol NMR ; 66(1): 69-83, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27627888

RESUMEN

Deriving molecular structure from [Formula: see text]-couplings obtained from NMR experiments is a challenge due to (1) the uncertainty in the Karplus relation [Formula: see text] connecting a [Formula: see text]-coupling value to a torsional angle [Formula: see text], (2) the need to account for the averaging inherent to the measurement of [Formula: see text]-couplings, and (3) the sampling road blocks that may emerge due to the multiple-valuedness of the inverse function [Formula: see text] of the function [Formula: see text]. Ways to properly handle these issues in structure refinement of biomolecules are discussed and illustrated using the protein hen egg white lysozyme as example.


Asunto(s)
Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Algoritmos , Modelos Teóricos , Resonancia Magnética Nuclear Biomolecular/métodos
18.
Bioorg Med Chem ; 24(20): 4936-4948, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27543388

RESUMEN

The cyclic octa-peptide octreotide and its derivatives are used as diagnostics and therapeutics in relation to particular types of cancers. This led to investigations of their conformational properties using spectroscopic, NMR and CD, methods. A CF3-substituted derivative, that was designed to stabilize the dominant octreotide conformer responsible for receptor binding, turned out to have a lower affinity. The obtained spectroscopic data were interpreted as to show an increased flexibility of the CF3 derivative compared to the unsubstituted octreotide, which could then explain the lower affinity. In this article, we use MD simulation without and with time-averaged NOE distance and time-averaged local-elevation 3J-coupling restraining representing experimental NMR data to determine the conformational properties of the different peptides in the different solvents for which experimental data are available, that are compatible with the NOE atom-atom distance bounds and the 3JHNHα-couplings as derived from the NMR measurements. The conformational ensembles show that the CF3 substitution in combination with the change of solvent from water to methanol leads to a decrease in flexibility and a shift in the populations of the dominant conformers that are compatible with the experimental data.


Asunto(s)
Simulación de Dinámica Molecular , Octreótido/química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Solventes/química , Factores de Tiempo
19.
Adv Mater ; 27(47): 7824-31, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26509528

RESUMEN

Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets are successfully prepared. Under UV-vis irradiation, these nanosheets are superior efficient catalysts for the photoreduction of CO2 to CO with water. The formed oxygen vacancies lead to the formation of coordinatively unsaturated Zn(+) centers within the nanosheets, responsible for the very high photocatalytic activities.

20.
J Biomol NMR ; 62(2): 221-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953310

RESUMEN

Cytochrome c552 from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156-5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, (15)N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high (15)N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18-21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Grupo Citocromo c/química , Alanina/química , Cisteína/química , Hemo/química , Hidrógeno/metabolismo , Modelos Moleculares , Isótopos de Nitrógeno/análisis , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...