Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cannabis Cannabinoid Res ; 8(3): 434-444, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37074668

RESUMEN

Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.


Asunto(s)
Cannabinoides , Endocannabinoides , Animales , Cobayas , Humanos , Antiinflamatorios , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Ciclooxigenasa 2 , Dinoprostona , Eicosanoides/metabolismo , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Endocannabinoides/metabolismo , Mamíferos/metabolismo , Sistema Respiratorio/metabolismo
2.
Shock ; 59(4): 612-620, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640152

RESUMEN

ABSTRACT: Increased epithelial permeability in sepsis is mediated via disruptions in tight junctions, which are closely associated with the perijunctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses sepsis-induced intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine the generalizability of these findings, this study measured the impact of MLCK deletion on survival and potential associated mechanisms following pneumonia-induced sepsis. MLCK -/- and wild-type mice underwent intratracheal injection of Pseudomonas aeruginosa . Unexpectedly, survival was significantly worse in MLCK -/- mice than wild-type mice. This was associated with increased permeability to Evans blue dye in bronchoalveolar lavage fluid but not in tissue homogenate, suggesting increased alveolar epithelial leak. In addition, bacterial burden was increased in bronchoalveolar lavage fluid. Cytokine array using whole-lung homogenate demonstrated increases in multiple proinflammatory and anti-inflammatory cytokines in knockout mice. These local pulmonary changes were associated with systemic inflammation with increased serum levels of IL-6 and IL-10 and a marked increase in bacteremia in MLCK -/- mice. Increased numbers of both bulk and memory CD4 + T cells were identified in the spleens of knockout mice, with increased early and late activation. These results demonstrate that genetic deletion of MLCK unexpectedly increases mortality in pulmonary sepsis, associated with worsened alveolar epithelial leak and both local and systemic inflammation. This suggests that caution is required in targeting MLCK for therapeutic gain in sepsis.


Asunto(s)
Pulmón , Quinasa de Cadena Ligera de Miosina , Neumonía , Sepsis , Animales , Ratones , Citocinas , Inflamación , Mucosa Intestinal , Pulmón/metabolismo , Pulmón/patología , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/genética , Permeabilidad , Neumonía/complicaciones , Sepsis/patología , Uniones Estrechas/fisiología
3.
BMC Plant Biol ; 22(1): 508, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316635

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates. RESULTS: Terminal deoxynucleotidyl transferase dUTP nick end labeling revealed both chromatin and nuclear fragmentation in the collapsed CMS-S pollen, demonstrating a programmed cell death (PCD) event sharing morphological features with mitochondria-signaled apoptosis in animals. Maize plants expressing mitochondria-targeted green fluorescent protein (GFP) demonstrated dynamic changes in mitochondrial morphology and association with actin filaments through the course of N-cytoplasm pollen development, whereas mitochondrial targeting of GFP was lost and actin filaments were disorganized in developing CMS-S pollen. Immunoblotting revealed significant developmental regulation of mitochondrial biogenesis in both CMS-S and N mito-types. Nuclear and mitochondrial genome encoded components of the cytochrome respiratory pathway and ATP synthase were of low abundance at the microspore stage, but microspores accumulated abundant nuclear-encoded alternative oxidase (AOX). Cytochrome pathway and ATP synthase components accumulated whereas AOX levels declined during the maturation of N bi-cellular pollen. Increased abundance of cytochrome pathway components and declining AOX also characterized collapsed CMS-S pollen. The accumulation and robust RNA editing of mitochondrial transcripts implicated translational or post-translational control for the developmentally regulated accumulation of mitochondria-encoded proteins in both mito-types. CONCLUSIONS: CMS-S pollen collapse is a PCD event coincident with developmentally programmed mitochondrial events including the accumulation of mitochondrial respiratory proteins and declining protection against mitochondrial generation of reactive oxygen species.


Asunto(s)
Biogénesis de Organelos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Polen/metabolismo , Apoptosis/genética , Citocromos/metabolismo , Adenosina Trifosfato , Infertilidad Vegetal/genética
4.
Methods Mol Biol ; 2367: 137-148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460025

RESUMEN

Lung fluid balance is maintained in part by the barriers formed by the pulmonary microvasculature and alveolar epithelium. Failure of either of these barriers leads to pulmonary edema, which limits lung function and exacerbates the severity of acute lung injury. Here we describe a method using Evans Blue dye to simultaneously measure the function of vascular and epithelial barriers of murine lungs in vivo.


Asunto(s)
Pulmón , Lesión Pulmonar Aguda , Animales , Permeabilidad Capilar , Azul de Evans , Ratones , Permeabilidad , Alveolos Pulmonares , Edema Pulmonar
5.
Alcohol ; 80: 81-89, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31278041

RESUMEN

In the lung, chronic alcohol consumption is a risk factor for acute respiratory distress syndrome (ARDS), a disorder that can be fatal due to airspace flooding. The severity of pulmonary edema is controlled by multiple barriers, and in particular the alveolar epithelial barrier and pulmonary microvasculature. However, to date, the effects of chronic alcohol ingestion on both of these barriers in the lung has not been directly and simultaneously measured. In addition the effects of alcohol on systemic, indirect lung injury versus direct injury have not been compared. In this study, we used tissue morphometry and Evans Blue permeability assays to assess the effects of alcohol and endotoxemia injury on pulmonary barrier function comparing intraperitoneal (IP) administration of lipopolysaccharide (LPS) to intratracheal (IT) administration. Consistent with previous reports, we found that in alcohol-fed mice, the alveolar barrier was impaired, allowing Evans Blue to permeate into the airspaces. Moreover, IT administered LPS caused a significant breach of both the alveolar epithelial and vascular barriers in alcohol-fed mice, whereas the endothelial barrier was less affected in response to IP administered LPS. The alveolar barrier of control mice remained intact for both IP and IT administered LPS. However, both injuries caused significant interstitial edema, independently of whether the mice were fed alcohol or not. These data suggest that in order to properly target pulmonary edema due to alcoholic lung syndrome, both the alveolar and endothelial barriers need to be considered as well as the nature of the "second hit" that initiates ARDS.


Asunto(s)
Alcoholismo/complicaciones , Enfermedades Pulmonares/inducido químicamente , Animales , Modelos Animales de Enfermedad , Endotoxinas/farmacología , Etanol/efectos adversos , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/patología , Enfermedades Pulmonares/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Síndrome
6.
Sci Rep ; 9(1): 7079, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068622

RESUMEN

The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organogénesis/genética , Alelos , Animales , Tipificación del Cuerpo/genética , Polaridad Celular/genética , Desarrollo Embrionario/genética , Femenino , Técnicas de Silenciamiento del Gen , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación Missense , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Results Probl Cell Differ ; 61: 351-373, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28409313

RESUMEN

Stem cells use mode of cell division, symmetric (SCD) versus asymmetric (ACD), to balance expansion with self-renewal and the generation of daughter cells with different cell fates. Studies in model organisms have identified intrinsic mechanisms that govern this process, which involves partitioning molecular components between daughter cells, frequently through the regulation of the mitotic spindle. Research performed in vertebrate tissues is revealing both conservation of these intrinsic mechanisms and crucial roles for extrinsic cues in regulating the frequency of these divisions. Morphogens and positional cues, including planar cell polarity proteins and guidance molecules, regulate key signaling pathways required to organize cell/ECM contacts and spindle pole dynamics. Noncanonical WNT7A/VANGL2 signaling governs asymmetric cell division and the acquisition of cell fates through spindle pole orientation in satellite stem cells of regenerating muscle fibers. During cortical neurogenesis, the same pathway regulates glial cell fate determination by regulating spindle size, independent of its orientation. Sonic hedgehog (SHH) stimulates the symmetric expansion of cortical stem and cerebellar progenitor cells and contributes to cell fate acquisition in collaboration with Notch and Wnt signaling pathways. SLIT2 also contributes to stem cell homeostasis by restricting ACD frequency through the regulation of spindle orientation. The capacity to influence stem cells makes these secreted factors excellent targets for therapeutic strategies designed to enhance cell populations in degenerative disease or restrict cell proliferation in different types of cancers.


Asunto(s)
División Celular Asimétrica/fisiología , Transducción de Señal/fisiología , Huso Acromático/fisiología , Células Madre/citología , Animales , Humanos , Neurogénesis/fisiología
8.
Proc Natl Acad Sci U S A ; 114(12): 3121-3126, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270600

RESUMEN

The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the ß-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.


Asunto(s)
Epitelio/metabolismo , Glándulas Mamarias Animales/metabolismo , Morfogénesis , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Femenino , Regulación de la Expresión Génica , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Ratones Noqueados , Morfogénesis/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Wnt/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...