Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 478(8): 1825-1833, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36574099

RESUMEN

Diabetic patients often have impaired heart rate (HR) control. HR is regulated both intrinsically within the sinoatrial node (SAN) and via neuronal input. Previously, we found lower ex vivo HR in type 2 diabetic rat hearts, suggesting impaired HR generation within the SAN. The major driver of pacemaking within the SAN is the activity of hyperpolarisation-activated cyclic nucleotide-gated 4 (HCN(4)) channels. This study aimed to investigate whether the lower intrinsic HR in the type 2 diabetic heart is due to changes in HCN4 function, protein expression and/ or distribution. The intrinsic HR response to HCN4 blockade was determined in isolated Langendorff-perfused hearts of Zucker type 2 Diabetic Fatty (ZDF) rats (DM) and their non-diabetic ZDF littermates (nDM). HCN4 protein expression and membrane localisation were determined using western blot and immunofluorescence, respectively. We found that the intrinsic HR was lower in DM compared to nDM hearts. The change in intrinsic HR in response to HCN4 blockade with ivabradine was diminished in DM hearts, which normalised the intrinsic HR between the groups. HCN4 protein expression was decreased in the SAN of DM compared to nDM controls with no change in the fraction of HCN4 localised to the membrane of SAN cardiomyocytes. The lower intrinsic HR in DM is likely due to decreased HCN4 expression and depressed HCN4 function. Our study provides a novel understanding into the intrinsic mechanisms underlying altered HR control in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nodo Sinoatrial , Ratas , Animales , Nodo Sinoatrial/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratas Zucker , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo
2.
J Comp Neurol ; 529(18): 3946-3973, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338311

RESUMEN

To develop new therapies for schizophrenia, evidence accumulated over decades highlights the essential need to investigate the GABAergic synapses that presynaptically influence midbrain dopaminergic neurons. Since current technology restricts these studies to animals, and evidence accumulated in recent decades indicates a developmental origin of schizophrenia, we investigated synaptic changes in male rat offspring exposed to maternal immune activation (MIA), a schizophrenia risk factor. Using a novel combination of lentiviruses, peroxidase-immunogold double labeling, three-dimensional serial section transmission electron microscopy and stereology, we observed clear anatomical alterations in synaptic inputs on dopaminergic neurons in the midbrain posterior ventral tegmental area (pVTA). These changes relate directly to a characteristic feature of schizophrenia: increased dopamine release. In 3-month-old and 14-month-old MIA rats, we found a marked decrease in the volume of presynaptic GABAergic terminals from the rostromedial tegmental nucleus (RMTg) and in the length of the synapses they made, when innervating pVTA dopaminergic neurons. In MIA rats in the long-term, we also discovered a decrease in the volume of the postsynaptic density (PSD) and in the maximum thickness of the PSD at the same synapses. These marked deficits were evident in conventional GABA-dopamine synapses and in synaptic triads that we discovered involving asymmetric synapses that innervated RMTg GABAergic presynaptic terminals, which in turn innervated pVTA dopaminergic neurons. In triads, the PSD thickness of asymmetric synapses was significantly decreased in MIA rats in the long-term cohort. The extensive anatomical deficits provide a potential basis for new therapies targeted at synaptic inputs on midbrain pVTA dopaminergic neurons, in contrast to current striatum-targeted antipsychotic drugs.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología , Terminales Presinápticos/metabolismo , Esquizofrenia/fisiopatología , Sinapsis/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Masculino , Microscopía Electrónica de Transmisión , Ratas , Factores de Riesgo
3.
J Neurosci ; 39(48): 9660-9672, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31641050

RESUMEN

Parkinson's disease causes prominent difficulties in the generation and execution of voluntary limb movements, including regulation of distal muscles and coordination of proximal and distal movement components to achieve accurate grasping. Difficulties with manual dexterity have a major impact on activities of daily living. We used extracellular single neuron recordings to investigate the neural underpinnings of parkinsonian movement deficits in the motor cortex of chronic unilateral 6-hydroxydopamine lesion male rats performing a skilled reach-to-grasp task the. Both normal movements and parkinsonian deficits in this task have striking homology to human performance. In lesioned animals there were several differences in the activity of cortical neurons during reaches by the affected limb compared with control rats. These included an increase in proportions of neurons showing rate decreases, along with increased amplitude of their average rate-decrease response at specific times during the reach, suggesting a shift in the balance of net excitation and inhibition of cortical neurons; a significant increase in the duration of rate-increase responses, which could result from reduced coupling of cortical activity to specific movement components; and changes in the timing and incidence of neurons with pure rate-increase or biphasic responses, particularly at the end of reach when grasping would normally be occurring. The changes in cortical activity may account for the deficits that occur in skilled distal motor control following dopamine depletion, and highlight the need for treatment strategies targeted toward modulating cortical mechanisms for fine distal motor control in patients.SIGNIFICANCE STATEMENT We show for the first time in a chronic lesion rat model of Parkinson's disease movement deficits that there are specific changes in motor cortex neuron activity associated with the grasping phase of a skilled motor task. Such changes provide a possible mechanism underpinning the problems with manual dexterity seen in Parkinson's patients and highlight the need for treatment strategies targeted toward distal motor control.


Asunto(s)
Fuerza de la Mano/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Masculino , Corteza Motora/patología , Neuronas/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/patología , Ratas , Ratas Wistar
4.
J Neurosci ; 35(3): 1211-6, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609635

RESUMEN

High-frequency deep brain stimulation (DBS) in motor thalamus (Mthal) ameliorates tremor but not akinesia in Parkinson's disease. The aim of this study was to investigate whether there are effective methods of Mthal stimulation to treat akinesia. Glutamatergic Mthal neurons, transduced with channelrhodopsin-2 by injection of lentiviral vector (Lenti.CaMKII.hChR2(H134R).mCherry), were selectively stimulated with blue light (473 nm) via a chronically implanted fiber-optic probe. Rats performed a reach-to-grasp task in either acute drug-induced parkinsonian akinesia (0.03-0.07 mg/kg haloperidol, s.c.) or control (vehicle injection) conditions, and the number of reaches was recorded for 5 min before, during, and after stimulation. We compared the effect of DBS using complex physiological patterns previously recorded in the Mthal of a control rat during reaching or exploring behavior, with tonic DBS delivering the same number of stimuli per second (rate-control 6.2 or 1.8 Hz, respectively) and with stimulation patterns commonly used in other brain regions to treat neurological conditions (tonic 130 Hz, theta burst (TBS), and tonic 15 Hz rate-control for TBS). Control rats typically executed >150 reaches per 5 min, which was unaffected by any of the stimulation patterns. Acute parkinsonian rats executed <20 reaches, displaying marked akinesia, which was significantly improved by stimulating with the physiological reaching pattern or TBS (both p < 0.05), whereas the exploring and all tonic patterns failed to improve reaching. Data indicate that the Mthal may be an effective site to treat akinesia, but the pattern of stimulation is critical for improving reaching in parkinsonian rats.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Actividad Motora/fisiología , Optogenética/métodos , Enfermedad de Parkinson Secundaria/fisiopatología , Enfermedad de Parkinson Secundaria/terapia , Tálamo/fisiopatología , Animales , Masculino , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Wistar
5.
J Neurosci ; 34(48): 15836-50, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429126

RESUMEN

Motor thalamus (Mthal) is a key node in the corticobasal ganglia (BG) loop that controls complex, cognitive aspects of movement. In Parkinson's disease (PD), profound alterations in neuronal activity occur in BG nuclei and cortex. Because Mthal is located between these two structures, altered Mthal activity has been assumed to underlie the pathogenesis of PD motor deficits. However, to date, inconsistent changes in neuronal firing rate and pattern have been reported in parkinsonian animals. Moreover, although a distinct firing pattern of Mthal neurons, called low-threshold calcium spike bursts (LTS bursts), is observed in reduced preparations, it remains unknown whether they occur or what their role might be in behaving animals. We recorded Mthal spiking activity in control and unilateral 6-hydroxydopamine lesioned rats performing a skilled forelimb-reaching task. We show for the first time that Mthal firing rate in control rats is modulated in a temporally precise pattern during reach-to-grasp movements, with a peak at the time of the reach-end and troughs just before and after it. We identified LTS-like events on the basis of LTS burst characteristics. These were rare, but also modulated, decreasing in incidence just after reach-end. The inhibitory modulations in firing rate and LTS-like events were abolished in parkinsonian rats. These data confirm that nigrostriatal dopamine depletion is accompanied by profound and specific deficits in movement-related Mthal activity. These changes would severely impair Mthal contributions to motor program development in motor cortex and are likely to be an important factor underlying the movement deficits of PD.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Animales de Enfermedad , Corteza Motora/fisiología , Movimiento/fisiología , Enfermedad de Parkinson/fisiopatología , Tálamo/fisiología , Animales , Miembro Anterior/inervación , Miembro Anterior/fisiología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...