Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Rep Methods ; 2(8): 100269, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046619

RESUMEN

B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.


Asunto(s)
Inmunidad Adaptativa , Enfermedades Autoinmunes , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores Inmunológicos
2.
MAbs ; 14(1): 2031482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377271

RESUMEN

Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.


Asunto(s)
Reacciones Antígeno-Anticuerpo , Aprendizaje Automático , Anticuerpos Monoclonales/química , Sitios de Unión de Anticuerpos , Epítopos
3.
Trends Biotechnol ; 40(4): 463-481, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34535228

RESUMEN

Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.


Asunto(s)
Anticuerpos , Secuenciación de Nucleótidos de Alto Rendimiento , Anticuerpos/química , Antígenos , Linfocitos B , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espectrometría de Masas
4.
Nat Comput Sci ; 2(12): 845-865, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38177393

RESUMEN

Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.


Asunto(s)
Anticuerpos , Reacciones Antígeno-Anticuerpo , Especificidad de Anticuerpos , Epítopos/química , Aprendizaje Automático
5.
Genome Res ; 31(12): 2209-2224, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815307

RESUMEN

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.

6.
Mol Oncol ; 15(11): 2958-2968, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402187

RESUMEN

Previous studies have indicated a synergistic effect between radiotherapy and immunotherapy. A better understanding of how this combination affects the immune system can help to clarify its role in the treatment of metastatic cancer. We performed T cell receptor (TCR) sequencing on 46 sequentially collected samples from 15 patients with stage IV non-small cell lung cancer, receiving stereotactic body radiotherapy combined with a programmed cell death ligand-1 (PD-L1) inhibitor. TCR repertoire diversity was assessed using Rényi diversity curves and the Shannon diversity index. TCR clones were tracked over time. We found decreasing or stable diversity in the best responders, and an increase in diversity at progression in patients with an initial response. Expansion of TCR clones was more often seen in responders. Several patients also developed new clones of high abundance. This seemed to be more related to radiotherapy than to immune checkpoint blockade. In summary, we observed similar dynamics in the TCR repertoire as have been described with immunotherapy alone. In addition, the occurrence of new unique clones of high abundance after radiotherapy may indicate that radiotherapy functions as a personalized cancer vaccine.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Receptores de Antígenos de Linfocitos T/metabolismo
7.
PLoS One ; 16(8): e0256442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34449791

RESUMEN

Epithelial ovarian cancer (EOC) has a 5-year relative survival of 50%, partly because markers of early-stage disease are not available in current clinical diagnostics. The aim of the present study was to investigate whether EOC is associated with transcriptional profiles in blood collected up to 7 years before diagnosis. For this, we used RNA-stabilized whole blood, which contains circulating immune cells, from a sample of EOC cases from the population-based Norwegian Women and Cancer (NOWAC) postgenome cohort. We explored case-control differences in gene expression in all EOC (66 case-control pairs), as well as associations between gene expression and metastatic EOC (56 pairs), serous EOC (45 pairs, 44 of which were metastatic), and interval from blood sample collection to diagnosis (≤3 or >3 years; 34 and 31 pairs, respectively). Lastly, we assessed differential expression of genes associated with EOC in published functional genomics studies that used blood samples collected from newly diagnosed women. After adjustment for multiple testing, this nested case-control study revealed no significant case-control differences in gene expression in all EOC (false discovery rate q>0.96). With the exception of a few probes, the log2 fold change values obtained in gene-wise linear models were below ±0.2. P-values were lowest in analyses of metastatic EOC (80% of which were serous EOC). No common transcriptional profile was indicated by interval to diagnosis; when comparing the 100 genes with the lowest p-values in gene-wise tests in samples collected ≤3 and >3 years before EOC diagnosis, no overlap in these genes was observed. Among 86 genes linked to ovarian cancer in previous publications, our data contained expression values for 42, and of these, tests of LIME1, GPR162, STAB1, and SKAP1, resulted in unadjusted p<0.05. Although limited by sample size, our findings indicated less variation in blood gene expression between women with similar tumor characteristics.


Asunto(s)
Cistadenocarcinoma Seroso/sangre , Proteínas de Neoplasias/genética , Neoplasias Ováricas/sangre , Transcriptoma/genética , Proteínas Adaptadoras del Transporte Vesicular/sangre , Moléculas de Adhesión Celular Neuronal/sangre , Estudios de Cohortes , Cistadenocarcinoma Seroso/epidemiología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas de Neoplasias/sangre , Noruega/epidemiología , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfoproteínas/sangre , Receptores Acoplados a Proteínas G/sangre , Receptores Mensajeros de Linfocitos/sangre
8.
Cell Rep ; 34(11): 108856, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730590

RESUMEN

Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.


Asunto(s)
Reacciones Antígeno-Anticuerpo/inmunología , Sitios de Unión de Anticuerpos/inmunología , Epítopos/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos/inmunología , Regiones Determinantes de Complementariedad/química , Epítopos/química , Aprendizaje Automático , Unión Proteica
9.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37396030

RESUMEN

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

10.
Bioinformatics ; 36(11): 3594-3596, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154832

RESUMEN

SUMMARY: B- and T-cell receptor repertoires of the adaptive immune system have become a key target for diagnostics and therapeutics research. Consequently, there is a rapidly growing number of bioinformatics tools for immune repertoire analysis. Benchmarking of such tools is crucial for ensuring reproducible and generalizable computational analyses. Currently, however, it remains challenging to create standardized ground truth immune receptor repertoires for immunoinformatics tool benchmarking. Therefore, we developed immuneSIM, an R package that allows the simulation of native-like and aberrant synthetic full-length variable region immune receptor sequences by tuning the following immune receptor features: (i) species and chain type (BCR, TCR, single and paired), (ii) germline gene usage, (iii) occurrence of insertions and deletions, (iv) clonal abundance, (v) somatic hypermutation and (vi) sequence motifs. Each simulated sequence is annotated by the complete set of simulation events that contributed to its in silico generation. immuneSIM permits the benchmarking of key computational tools for immune receptor analysis, such as germline gene annotation, diversity and overlap estimation, sequence similarity, network architecture, clustering analysis and machine learning methods for motif detection. AVAILABILITY AND IMPLEMENTATION: The package is available via https://github.com/GreiffLab/immuneSIM and on CRAN at https://cran.r-project.org/web/packages/immuneSIM. The documentation is hosted at https://immuneSIM.readthedocs.io. CONTACT: sai.reddy@ethz.ch or victor.greiff@medisin.uio.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Benchmarking , Programas Informáticos , Simulación por Computador , Receptores de Antígenos de Linfocitos T/genética
11.
Clin Epidemiol ; 10: 931-940, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123005

RESUMEN

BACKGROUND: There is a large body of evidence demonstrating long-lasting protective effect of each full-term pregnancy (FTP) on the development of breast cancer (BC) later in life, a phenomenon that could be related to both hormonal and immunological changes during pregnancies. In this work, we studied the pregnancy-associated differences in peripheral blood gene expression profiles between healthy women and women diagnosed with BC in a prospective design. METHODS: Using an integrated system epidemiology approach, we modeled BC incidence as a function of parity in the Norwegian Women and Cancer (NOWAC) cohort (165,000 women) and then tested the resulting mathematical model using gene expression profiles in blood in a nested case-control study (460 invasive case-control pairs) of women from the NOWAC postgenome cohort. Lastly, we undertook a gene set enrichment analysis for immunological gene sets. RESULTS: A linear trend fitted the dataset precisely showing an 8% decrease in risk of BC for each FTP, independent of stratification on other risk factors and lasting for decades after a woman's last FTP. Women with six children demonstrated 48% reduction in the incidence of BC compared to nulliparous. When we looked at gene expression, we found that 756 genes showed linear trends in cancer-free controls (false discovery rate [FDR] 5%), but this was not the case for any of the genes in BC cases. Gene set enrichment analysis of immunologic gene sets (C7 collection in Molecular Signatures Database) revealed 215 significantly enriched human gene sets (FDR 5%). CONCLUSION: We found marked differences in gene expression and enrichment profiles of immunologic gene sets between BC cases and healthy controls, suggesting an important protective effect of the immune system on BC risk.

12.
Oncotarget ; 8(56): 95135-95151, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29221117

RESUMEN

Pro-inflammatory cells, cytokines, and chemokines are essential in promoting a tumor supporting microenvironment. Chemerin is a chemotactic protein and a natural ligand for the receptors CMKLR1, GPR1, and CCRL2. The chemerin/CMKLR1 axis is involved in immunity and inflammation, and it has also been implicated in obesity and cancer. In neuroblastoma, a childhood tumor of the peripheral nervous system we identified correlations between high CMKLR1 and GPR1 expression and reduced overall survival probability. CMKLR1, GPR1, and chemerin RNA and protein were detected in neuroblastoma cell lines and neuroblastoma primary tumor tissue. Chemerin induced calcium mobilization, increased MMP-2 synthesis as well as MAP-kinase- and Akt-mediated signaling in neuroblastoma cells. Stimulation of neuroblastoma cells with serum, TNFα or IL-1ß increased chemerin secretion. The small molecule CMKLR1 antagonist α-NETA reduced the clonogenicity and viability of neuroblastoma cell lines indicating the chemerin/CMKLR1 axis as a promoting factor in neuroblastoma tumorigenesis. Furthermore, nude mice carrying neuroblastoma SK-N-AS cells as xenografts showed impaired tumor growth when treated daily with α-NETA from day 1 after tumor cell injection. This study demonstrates the potential of the chemerin/CMKLR1 axis as a prognostic factor and possible therapeutic target in neuroblastoma.

13.
PLoS One ; 11(8): e0160602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494406

RESUMEN

In both septic and aseptic inflammation, N-formyl peptides may enter the circulation and induce a systemic inflammatory response syndrome similar to that observed during septic shock. The inflammatory response is brought about by the binding of N-formyl peptide to formyl peptide receptors (FPRs), specific signaling receptors expressed on myeloid as well as non-myeloid cells involved in the inflammatory process. N-formyl peptides conjugated with fluorochromes, such as fluorescein isothiocyanate (FITC) are increasingly experimentally used to identify tissues involved in inflammation. Hypothesizing that the process of FITC-conjugation may transfer formyl peptide to a ligand that is efficiently cleared from the circulation by the natural powerful hepatic scavenging regime we studied the biodistribution of intravenously administered FITC-fNLPNTL (Fluorescein-isothiocyanate- N-Formyl-Nle-Leu-Phe-Nle-Tyr-Lys) in mice. Our findings can be summarized as follows: i) In contrast to unconjugated fNLPNTL, FITC-fNLPNTL was rapidly taken up in the liver; ii) Mouse and human liver sinusoidal endothelial cells (LSECs) and hepatocytes express formyl peptide receptor 1 (FRP1) on both mRNA (PCR) and protein (Western blot) levels; iii) Immunohistochemistry showed that mouse and human liver sections expressed FRP1 in LSECs and hepatocytes; and iv) Uptake of FITC-fNLPNTL could be largely blocked in mouse and human hepatocytes by surplus-unconjugated fNLPNTL, thereby suggesting that the hepatocytes in both species recognized FITC-fNLPNTL and fNLPNTL as indistinguishable ligands. This was in contrast to the mouse and human LSECs, in which the uptake of FITC-fNLPNTL was mediated by both FRP1 and a scavenger receptor, specifically expressed on LSECs. Based on these results we conclude that a significant proportion of FITC-fNLPNTL is taken up in LSECs via a scavenger receptor naturally expressed in these cells. This calls for great caution when using FITC-fNLPNTL and other chromogen-conjugated formyl peptides as a probe to identify cells in a liver engaged in inflammation. Moreover, our finding emphasizes the role of the liver as an important neutralizer of otherwise strong inflammatory signals such as formyl peptides.


Asunto(s)
Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceínas/metabolismo , Hepatocitos/metabolismo , Oligopéptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Animales , Capilares/citología , Capilares/efectos de los fármacos , Capilares/metabolismo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo
14.
BMC Cancer ; 16: 490, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27432059

RESUMEN

BACKGROUND: Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor mainly expressed by the cells of myeloid origin, where it mediates the innate immune response to bacterial formylated peptides. High expression of FPR1 has been detected in various cancers but the function of FPR1 in tumorigenesis is poorly understood. METHODS: Expression of FPR1 in neuroblastoma cell lines and primary tumors was studied using RT-PCR, western blotting, immunofluorescence and immunohistochemistry. Calcium mobilization assays and western blots with phospho-specific antibodies were used to assess the functional activity of FPR1 in neuroblastoma. The tumorigenic capacity of FPR1 was assessed by xenografting of neuroblastoma cells expressing inducible FPR1 shRNA, FPR1 cDNA or control shRNA in nude mice. RESULTS: FPR1 is expressed in neuroblastoma primary tumors and cell lines. High expression of FPR1 corresponds with high-risk disease and poor patient survival. Stimulation of FPR1 in neuroblastoma cells using fMLP, a selective FPR1 agonist, induced intracellular calcium mobilization and activation of MAPK/Erk, PI3K/Akt and P38-MAPK signal transduction pathways that were inhibited by using Cyclosporin H, a selective receptor antagonist for FPR1. shRNA knock-down of FPR1 in neuroblastoma cells conferred a delayed xenograft tumor development in nude mice, whereas an ectopic overexpression of FPR1 promoted augmented tumorigenesis in nude mice. CONCLUSION: Our data demonstrate that FPR1 is involved in neuroblastoma development and could represent a therapy option for the treatment of neuroblastoma.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/patología , Ciclosporina/farmacología , Neuroblastoma/patología , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Formil Péptido/metabolismo , Animales , Calcio/metabolismo , Niño , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Formil Péptido/genética , Trasplante Heterólogo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Virol J ; 12: 7, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25638270

RESUMEN

BACKGROUND: The human polyomavirus BK expresses a 66 amino-acid peptide referred to as agnoprotein. Though mutants lacking agnoprotein are severely reduced in producing infectious virions, the exact function of this peptide remains incompletely understood. To elucidate the function of agnoprotein, we searched for novel cellular interaction partners. METHODS: Yeast-two hybrid assay was performed with agnoprotein as bait against human kidney and thymus libraries. The interaction between agnoprotein and putative partners was further examined by GST pull down, co-immunoprecipitation, and fluorescence resonance energy transfer studies. Biochemical and biological studies were performed to examine the functional implication of the interaction of agnoprotein with cellular target proteins. RESULTS: Proliferating cell nuclear antigen (PCNA), which acts as a processivity factor for DNA polymerase δ, was identified as an interaction partner. The interaction between agnoprotein and PCNA is direct and occurs also in human cells. Agnoprotein exerts an inhibitory effect on PCNA-dependent DNA synthesis in vitro and reduces cell proliferation when ectopically expressed. Overexpression of PCNA restores agnoprotein-mediated inhibition of cell proliferation. CONCLUSION: Our data suggest that PCNA is a genuine interaction partner of agnoprotein and the inhibitory effect on PCNA-dependent DNA synthesis by the agnoprotein may play a role in switching off (viral) DNA replication late in the viral replication cycle when assembly of replicated genomes and synthesized viral capsid proteins occurs.


Asunto(s)
Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Virus BK/genética , Virus BK/metabolismo , Línea Celular Tumoral , Proliferación Celular , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...