Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725643

RESUMEN

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Nitratos/farmacología , Fitocromo B , Arabidopsis/genética , Ácidos Indolacéticos , Transportadores de Nitrato , ARN , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
2.
Plant Physiol ; 185(1): 256-273, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631805

RESUMEN

Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Estomas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Ecotipo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Bull Math Biol ; 81(8): 3245-3281, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30552627

RESUMEN

One of the central problems in animal and plant developmental biology is deciphering how chemical and mechanical signals interact within a tissue to produce organs of defined size, shape, and function. Cell walls in plants impose a unique constraint on cell expansion since cells are under turgor pressure and do not move relative to one another. Cell wall extensibility and constantly changing distribution of stress on the wall are mechanical properties that vary between individual cells and contribute to rates of expansion and orientation of cell division. How exactly cell wall mechanical properties influence cell behavior is still largely unknown. To address this problem, a novel, subcellular element computational model of growth of stem cells within the multilayered shoot apical meristem (SAM) of Arabidopsis thaliana is developed and calibrated using experimental data. Novel features of the model include separate, detailed descriptions of cell wall extensibility and mechanical stiffness, deformation of the middle lamella, and increase in cytoplasmic pressure generating internal turgor pressure. The model is used to test novel hypothesized mechanisms of formation of the shape and structure of the growing, multilayered SAM based on WUS concentration of individual cells controlling cell growth rates and layer-dependent anisotropic mechanical properties of subcellular components of individual cells determining anisotropic cell expansion directions. Model simulations also provide a detailed prediction of distribution of stresses in the growing tissue which can be tested in future experiments.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Modelos Biológicos , Anisotropía , Arabidopsis/citología , Arabidopsis/fisiología , Fenómenos Biomecánicos , Proliferación Celular , Pared Celular/fisiología , Simulación por Computador , Conceptos Matemáticos , Meristema/citología , Meristema/fisiología , Desarrollo de la Planta
4.
PLoS Genet ; 14(4): e1007351, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659567

RESUMEN

Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Homeodominio/química , Meristema/metabolismo , Modelos Biológicos , Mutación , Plantas Modificadas Genéticamente , Dominios Proteicos , Estabilidad Proteica , Transducción de Señal , Células Madre/metabolismo , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 113(41): E6307-E6315, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671631

RESUMEN

The homeodomain transcription factor WUSCHEL (WUS) promotes stem cell maintenance in inflorescence meristems of Arabidopsis thaliana WUS, which is synthesized in the rib meristem, migrates and accumulates at lower levels in adjacent cells. Maintenance of WUS protein levels and spatial patterning distribution is not well-understood. Here, we show that the last 63-aa stretch of WUS is necessary for maintaining different levels of WUS protein in the rib meristem and adjacent cells. The 63-aa region contains the following transcriptional regulatory domains: the acidic region, the WUS-box, which is conserved in WUS-related HOMEOBOX family members, and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR-like) domain. Our analysis reveals that the opposing functions of WUS-box, which is required for nuclear retention, and EAR-like domain, which participates in nuclear export, are necessary to maintain higher nuclear levels of WUS in cells of the rib meristem and lower nuclear levels in adjacent cells. We also show that the N-terminal DNA binding domain, which is required for both DNA binding and homodimerization, along with the homodimerization sequence located in the central part of the protein, restricts WUS from spreading excessively and show that the homodimerization is critical for WUS function. Our analysis also reveals that a higher level of WUS outside the rib meristem leads to protein destabilization, suggesting a new tier of regulation in WUS protein regulation. Taken together our data show that processes that influence WUS protein levels and spatial distribution are highly coupled to its transcriptional activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Multimerización de Proteína , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Expresión Génica Ectópica , Genotipo , Proteínas de Homeodominio/química , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Mutación , Especificidad de Órganos/genética , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Estabilidad Proteica , Transporte de Proteínas
6.
Proc Natl Acad Sci U S A ; 113(41): E6298-E6306, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671653

RESUMEN

Transcriptional mechanisms that underlie the dose-dependent regulation of gene expression in animal development have been studied extensively. However, the mechanisms of dose-dependent transcriptional regulation in plant development have not been understood. In Arabidopsis shoot apical meristems, WUSCHEL (WUS), a stem cell-promoting transcription factor, accumulates at a higher level in the rib meristem and at a lower level in the central zone where it activates its own negative regulator, CLAVATA3 (CLV3). How WUS regulates CLV3 levels has not been understood. Here we show that WUS binds a group of cis-elements, cis- regulatory module, in the CLV3-regulatory region, with different affinities and conformations, consisting of monomers at lower concentration and as dimers at a higher level. By deleting cis elements, manipulating the WUS-binding affinity and the homodimerization threshold of cis elements, and manipulating WUS levels, we show that the same cis elements mediate both the activation and repression of CLV3 at lower and higher WUS levels, respectively. The concentration-dependent transcriptional discrimination provides a mechanistic framework to explain the regulation of CLV3 levels that is critical for stem cell homeostasis.


Asunto(s)
Homeostasis , Células Madre/metabolismo , Transcripción Genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Mutación , Brotes de la Planta , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Secuencias Reguladoras de Ácido Ribonucleico
7.
Methods Mol Biol ; 959: 235-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299680

RESUMEN

Shoot apical meristems (SAMs) of higher plants harbor a set of stem-cells and provide cells for the development of all the above-ground biomass of plants. Most of the important pattern formation events such as maintenance of stem-cell identity, specification and differentiation of leaf/flower primordia, and temporal control of the transition from vegetative to reproductive program are determined in SAMs. Genetic analysis has revealed molecular and hormonal pathways involved in stem-cell maintenance, organ differentiation, and flowering time. However, limited information is available as to how different pathways interact with each other to function as a network in specifying different cell types and their function. Deciphering gene networks that underlie cell fate transitions requires new approaches aimed at assaying genome-scale expression patterns of genes at a single cell-type resolution. Here we provide details of experimental methods involved in protoplasting of SAM cells, generating cell type-specific gene expression profiles, and analysis platforms for identifying and inferring gene networks.


Asunto(s)
Meristema/metabolismo , Brotes de la Planta/citología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...