Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3): L032108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632754

RESUMEN

The tendency of materials to order in triboelectric series has prompted suggestions that contact electrification might have a single, unified underlying description. However, the possibility of "triboelectric cycles," i.e., series that loop back onto themselves, is seemingly at odds with such a coherent description. In this work, we propose that if multiple charge carrying species are at play, both triboelectric series and cycles are possible. We show how series arise naturally if only a single charge carrier species is involved and if the driving mechanism is approach toward thermodynamic equilibrium, and simultaneously, that cycles are forbidden under such conditions. Suspecting multiple carriers might relax the situation, we affirm this is the case by explicit construction of a cycle involving two carriers, and then extend this to show how more complex cycles emerge. Our work highlights the importance of series and cycles towards determining the underlying mechanism(s) and carrier(s) in contact electrification.

2.
Phys Rev E ; 100(3-1): 032902, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31639897

RESUMEN

Hyperuniform states are an efficient way to fill up space for disordered systems. In these states the particle distribution is disordered at the short scale but becomes increasingly uniform when looked at large scales. Hyperuniformity appears in several systems, in static or quasistatic regimes, as well as close to transitions to absorbing states. Here, we show that a vibrated granular layer, at the critical point of the liquid-to-solid transition, displays dynamic hyperuniformity. Prior to the transition, patches of the solid phase form, with length scales and mean lifetimes that diverge critically at the transition point. When reducing the wave number, density fluctuations encounter increasingly more patches that block their propagation, resulting in a static structure factor that tends to zero for small wave numbers at the critical point, which is a signature of hyperuniformity. A simple model demonstrates that this coupling of a density field to a highly fluctuating scalar friction field gives rise to dynamic hyperuniform states. Finally, we show that the structure factor detects better the emergence of hyperuniformity, compared to the particle number variance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...