Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Foods ; 12(3)2023 Jan 28.
Article En | MEDLINE | ID: mdl-36766103

During alcoholic fermentation, a considerable amount of carbon dioxide (CO2) is produced, and the stream of CO2 can strip aromatic substances from the fermenting must. Aroma losses during fermentation can be significant and may lead to a reduction in wine quality. This study is focused on new fermentation gas capture technology. In the experiment, gas was captured during the fermentation of sauvignon blanc must. The concentration of individual volatile compounds in the fermentation gas was determined using gas chromatography, and the highest values were achieved by isoamyl acetate, isoamyl alcohol and ethyl decanoate. Ethyl dodecanoate achieved the lowest values of the investigated volatile substances. For sensory assessment, quantitative descriptive analysis (QDA) compared water carbonated with fermentation gas and water carbonated with commercial carbon dioxide for food purposes. Based on the results of this study, it can be concluded that the captured gas containing positive aromatic substances is suitable for the production of carbonated drinks in the food industry.

2.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Article En | MEDLINE | ID: mdl-35808019

One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.

3.
Plants (Basel) ; 10(10)2021 Oct 11.
Article En | MEDLINE | ID: mdl-34685965

The Erzincan plain is one of the richest regions in Turkey in terms of plant biodiversity. In this region, the famous grape cultivar 'Karaerik' has always dominated grape production due to its berry characteristics. The cultivar shows great morphological variation at clonal level. In this study, the total phenolic content and antioxidant activity of peel, pulp and seed extracts of nine 'Karaerik' clones sampled from same location were investigated. The Folin-Ciocalteu method was used to determine the total phenolic content of peel, pulp and seed extracts of nine clones. To determine antioxidant activity, three well known assays such as DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), FRAP (Ferric Reducing Antioxidant Power) and TEAC (Trolox Equivalent Antioxidant Capacity) were used. In addition, the correlation between total phenol content and DPPH, FRAP and TEAC was determined. Results showed that among the tissues, seed samples in berries of all clones had the highest total phenol content and antioxidant activity determined by three assays. Seed samples were followed by peel and pulp for total phenolic content and antioxidant activity. Among the nine 'Karaerik' clones, Clone 8 had the highest total phenolic content (149 mg GAE/100 g FW) while Clone 3 had the lowest (111 mg GAE/100 g FW). Peel, pulp and seed samples of nine 'Karaerik' clones showed strong antioxidant activity in DPPH, FRAP and TEAC assays. In particular, grape seeds were found rich for better in phenolic compounds including gallic acid, quercetin, catechin, chlorogenic acid, caffeic acid and p-coumaric acid. Clones such as 7, 8 and 9 higher antioxidant activity may present great potential for grape breeders and the food industry as well as health-conscious consumers.

4.
Plant Foods Hum Nutr ; 76(4): 472-477, 2021 Dec.
Article En | MEDLINE | ID: mdl-34626324

Plant lignans possess several properties beneficial for human health and therefore, increasing their contents in foods and beverages is desirable. One of the lignan sources in human diet is wine. To elucidate the origin of lignans contained in wine, LC-MS was used to analyze resinol-related lignans in must, seeds, stems, and wine prepared using stainless steel tanks, oak barrels, and Qvevri (clay vessel). White wines aged in stainless steel tanks contained significantly lower amounts of lignan aglycones (20-60 µg/L) than red and Qvevri wines (300-500 µg/L). Generally, white wines aged in stainless steel tanks contained only low amounts of isolariciresinol and matairesinol. Qvevri wines and red wine aged in stainless steel tank contained up to five lignan compounds and in wine aged in oak barrel, six different lignans were identified. Consistently, only low concentration of isolariciresinol has been found in must, whereas more lignan compounds have been found in grape seeds (isolariciresinol, secoisolariciresinol, and pinoresinol) and stems (isolariciresinol and syringaresinol). Consequently, we conclude that lignan content in wine can be increased by maturation in contact with grape berries, seeds, or stems or with wood.


Lignans , Vitis , Wine , Fruit/chemistry , Lignans/analysis , Wine/analysis , Wood/chemistry
5.
Foods ; 10(9)2021 Aug 31.
Article En | MEDLINE | ID: mdl-34574164

Ornamental edible flowers can be used as novel nutraceutical sources with valuable biological properties. The purpose of this study was to establish nutritional, chemical, and sensory characteristics, antioxidant capacity (AC), and the relationship between their bioactive components and AC. The selected flowers Begonia × tuberhybrida, Tropaeolum majus, Calendula officinalis, Rosa, Hemerocallis, and Tagetes patula, can be easily collected due to their larger size. Their methanolic extracts were spectrophotometrically determined for polyphenols, flavonoids, and AC. Mineral elements were analyzed by atomic-absorption spectroscopy; crude protein was quantified by the Kjeldahl method. Eventually, 30 panelists evaluated sensory properties in 11 attributes. In addition, this study may serve to popularize selected blossoms. In flowers the contents of minerals were in this order: K > Ca > P > Mg > Na > Zn > Mn > Fe > Cu > Mo. AC ranged between 4.11 and 7.94 g of ascorbic acid equivalents/kg of fresh mass. The correlation coefficients between AC-total phenolics and AC-total flavonoids were r = 0.73* and r = 0.58*, respectively. It is also possible to observe a strong correlation between mineral elements and bioactive compounds. Hemerocallis was rated as the best and most tasteful; additionally, it exhibited the highest AC, total phenolic and flavonoid contents.

6.
Plants (Basel) ; 10(9)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34579411

Grapes are sensitive to early autumn and spring low temperature damage. The current study aimed to assay the effects of cold stress (+1 °C for 4, 8, and 16 h) on three grapevine cultivars (Ghiziluzum, Khalili, and Perllete). The results showed that cold stress caused significant changes in the antioxidant and biochemicals content in the studied cultivars. Furthermore, examining the chlorophyll fluorescence indices, cold stress caused a significant increase in minimal fluorescence (F0), a decrease in maximal fluorescence (Fm), and the maximum photochemical quantum yield of photosystem II (Fv/Fm) in all cultivars. Among the studied cultivars, 'Perllete' had the highest increase in proline content and activity of antioxidant enzymes and also had the lowest accumulation of malondialdehyde, hydrogen peroxide, electrolyte leakage, and F0, as well as less of a decrease in Fm and Fv/Fm, and had a higher tolerance to cold stress than 'Ghiziluzum' and 'Khalili'. 'Perllete' and 'Ghiziluzum' showed reasonable tolerance to the low temperature stress. 'Khalili' was sensitive to the stress. The rapid screening of grapevine cultivars in early spring low temperatures is applicable with the assaying of some biomolecules and chlorophyll fluorescence.

7.
Plants (Basel) ; 10(8)2021 Jul 26.
Article En | MEDLINE | ID: mdl-34451573

In this study, berry dimensions and shape traits, which are important for the design of the grape processing system and the classification of 10 different grape varieties grown in same ecological conditions ('Ata Sarisi', 'Baris', 'Dimiski', 'Hatun Parmagi', 'Helvani', 'Horoz Karasi', 'Hönüsü', 'Italia', 'Mevlana Sarisi', and 'Red Globe') were determined; differences between the varieties were identified with the use of discriminant analysis. The largest grape varieties were identified as 'Ata Sarisi' and 'Red Globe'. The 'Red Globe' and 'Helvani' varieties had geometrically sphere-like shape. The 'Baris' variety had the lowest size averages. According to elliptic Fourier analysis, the primary source of shape variation was ellipse and sphere-looking varieties. However, shape variation was seen due to the existence of a small number of drop-like varieties. According to discriminant analysis, shape differences of the varieties were defined by two discriminant functions. Based on these discriminant functions, the greatest classification performance was achieved for 'Mevlana Sarisi' and 'Dimiski'. In scatter plots, three shape definitions (sphere, ellipse, and drop) were made for grape varieties. Cluster analysis revealed 4 sub-groups. The first sub-group included the 'Mevlana Sarisi' variety; the second sub-group included the 'Hönüsü', 'Hatun Parmagi', 'Dimiski', and 'Horoz Karasi' varieties; the third sub-group included the 'Ata Sarisi' variety; the fourth sub-group included the 'Baris', 'Helvani', 'Italia', and 'Red Globe' varieties. The variety in the first group had a geometrically ellipse-like shape, the largest length, and the smallest width. The size data were the smallest for the second sub-group. The third sub-group, with the ellipse-like shape, had the large size data. The grape varieties the closest to the sphere were classified in the fourth group, and these varieties had the large sizes.

8.
Plants (Basel) ; 10(7)2021 Jul 01.
Article En | MEDLINE | ID: mdl-34371553

Morphology is the most visible and distinct character of plant organs and is accepted as one of the most important tools for plant biologists, plant breeders and growers. A number of methods based on plant morphology are applied to discriminate in particular close cultivars. In this study, image processing analysis was used on 20 grape cultivars ("Amasya beyazi", "Antep karasi", "Bahçeli karasi", "Çavus", "Cevsen", "Crimson", "Dimrit", "Erenköy beyazi", "Hafizali", "Karasabi", "Kirmizi", "Izabella (Isabella) ", "Morsabi", "Müsgüle", "Nuniya", "Royal", "Sultani çekirdeksiz (Sultanina)", "Yalova incisi", "Yerli beyazv", "Yuvarlak çekirdeksiz") to classify them. According to image processing analysis, the longest and the greatest projected area values were observed in "Antep karasi" cultivar. The "Sultani çekirdeksiz" cultivar had the least geometric mean diameter. The greatest sphericity ratios were observed in "Yerli beyaz", "Erenköy beyazi" and "Amasya beyazi" cultivars. According to principal component analysis, dimensional attributes were identified as the most significant source of variation discriminant grape cultivars from each other. Morphological differences between the cultivars were explained by sphericity and elongation variables. According to elliptic Fourier analysis (EFA) results, grape morphology largely looks like ellipse and sphere. However, there are some cultivars that look similar to a water drop. The cultivars with similar morphology were identified by a pair-wise comparison test conducted with the use of linear discriminant analysis, and they were presented in a scatter plot. According to cluster analysis, present grape cultivars were classified into seven sub-groups, which indicated great diversity.

9.
Molecules ; 26(7)2021 Apr 06.
Article En | MEDLINE | ID: mdl-33917585

Cadmium (Cd) is a heavy metal that occurs in all areas of the environment, including the food chain. In the body, it causes oxidative stress by producing free radicals that are harmful to the cells. Grape seed extract (GSE) contains a wide range of biologically active components that help to neutralize the adverse effects of free radicals. In this study, the effects of GSE prepared form semi-resistant grapevine cultivar Cerason, which is rich in phenolics, on biochemical markers of brown rats exposed to the effects of cadmium were monitored. GSE increased the plasma antioxidant activity and, in the kidneys and the liver, Cd content was significantly lowered by GSE co-administration. Accordingly, the increase in creatinine content and alanine aminotransferase activity and the decrease of catalase and superoxide dismutase activities caused by cadmium were slowed down by GSE co-administration. The results of this work reveal that grape seed extract offers a protective effect against the intake of heavy metals into the organism.


Biomarkers/metabolism , Grape Seed Extract/pharmacology , Health , Kidney/metabolism , Liver/metabolism , Alanine Transaminase/blood , Animals , Antioxidants/analysis , Aspartate Aminotransferases/blood , Cadmium/blood , Catalase/metabolism , Creatinine/blood , Kidney/drug effects , Liver/drug effects , Liver/enzymology , Metallothionein/metabolism , Phytochemicals/analysis , Rats, Wistar , Seeds/chemistry , Superoxide Dismutase/metabolism , Urea/blood
10.
Food Sci Nutr ; 8(11): 5850-5859, 2020 Nov.
Article En | MEDLINE | ID: mdl-33282237

Carbonyl compounds, especially acetaldehyde in white wines which have a detrimental effect on the aroma and overall stability of wine, were studied.. Seven wine samples of Grüner Veltliner were produced of one input raw material of grapes, all with different dosage of SO2. The sulfur dioxide was maintained at a fixed level during the maturation process and sampled at six months. The grapes were processed, fermented, aged for three months in stainless steel tanks, prepared for bottling, bottled, and then aged in the bottle. In the samples taken, the volume of acetaldehyde, pyruvate, 2-oxoglutarate, diacetyl, and acetoin was determined by HPLC with diode array detection. Individual forms of SO2 were determined by iodometric titration. The wine that was matured on the lees and without the addition of SO2 (variant (0/0/0)) contained the lowest amount of all compounds measured. For example, the volume of acetaldehyde for this wine was 2.7 mg/L at the end of the experiment. The results of the sensory analysis showed that such wine could compete with wines with higher SO2 content without any problems.

11.
Molecules ; 25(23)2020 Dec 04.
Article En | MEDLINE | ID: mdl-33291809

This study deals with the effects of the use of a mixture of medium-chain fatty acids (MCFA) at the end of the alcohol fermentation process on the content of carbonyl compounds in wine. During the experiment, the effects of the addition of MCFA at doses of 10 and 20 mg/L were compared to the termination of alcohol fermentation using cross-flow filtration and chilling treatments. Individual carbonyl compounds were determined by HPLC analysis. The experiment showed that the addition of MCFA caused a reduction of the acetaldehyde content compared to the chilling process, and a reduction of the diacetyl content compared to cross-flow filtration. Throughout the experiment, a lower level of total carbonyl compounds was observed after the addition of MCFA.


Ethanol/chemistry , Fatty Acids/chemistry , Wine/analysis , Acetaldehyde/chemistry , Chromatography, High Pressure Liquid/methods , Fermentation
12.
Molecules ; 25(22)2020 Nov 14.
Article En | MEDLINE | ID: mdl-33202575

This review is focused on the study of the effects of grape seed and skin extract (GSSE) on human health. GSSE contains high concentrations of important polyphenolic substances with high biological activity. This review is a summary of studies that investigate the effects of GSSE on diabetes mellitus, cardiovascular disease and cancer, its neuroprotective effect, and its effects on the gastrointestinal tract and other health complications related to these diseases. The results of the studies confirm that the anti-inflammatory, antiapoptotic, and pro-proliferative effects of "Vitis vinifera L." seed extract reduce the level of oxidative stress and improve the overall lipid metabolism.


Biomarkers/metabolism , Grape Seed Extract/pharmacology , Health , Animals , Disease , Humans , Lipids/blood , Neuroprotective Agents/pharmacology
13.
Pharmaceutics ; 12(9)2020 Aug 28.
Article En | MEDLINE | ID: mdl-32872234

Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.

14.
Molecules ; 25(16)2020 Aug 15.
Article En | MEDLINE | ID: mdl-32824270

The paper deals with the study of antioxidant properties of extracts from vine seeds (Vitis vinifera L.) using spectrometric and chromatographic techniques. Ten vine varieties (Cerason, Laurot, Kofranka, Gewürztraminer, Hibernal, Blaufrankisch, Zweigeltrebe, Erilon, Palava, and Welschriesling) obtained from the years 2015, 2016, and 2017 were selected for the study. The antioxidant activity was determined spectrophotometrically using four fundamentally different methods; the content of total polyphenolic compounds was determined using the Folin-Ciocalteu method. In 2015, the content of 14 antioxidants (gallic acid, caffeic acid, coumaric acid, coutaric acid, ferulic acid, fertaric acid, trans-piceid, trans-piceatannol, rutin, quercetin-3-ß-d-glucoside, quercitrin, myricetin, catechin, and epicatechin) were studied. The results of the study show the high content of antioxidant components in grape seeds and the differences in content in individual varieties and in individual years.


Antioxidants/analysis , Fruit/chemistry , Plant Extracts/analysis , Seeds/chemistry , Vitis/chemistry
15.
Sensors (Basel) ; 20(12)2020 Jun 24.
Article En | MEDLINE | ID: mdl-32599780

The present article dealt with the fortification of plain wheat flour by the addition of grape pomace flour and mealworm larvae powder, focusing on the mineral content and selected properties of the dough. The work also analyzed the properties of one mixture in a weight combination of 80% wheat flour, 10% grape pomace, and 10% mealworm. X-ray analysis was used to measure the mineral content of calcium, iron, copper, and zinc. The properties of the individual mixture were monitored using an experimental electronic nose and a thermodynamic sensor system during the leavening. The results showed that a combination of 50% grape pomace and 50% mealworm larvae was advantageous from the viewpoint of the favorable representation of minerals. The analyzed mixture contained a high proportion of calcium (3976.7 ± 362.9 mg·kg-1), iron (209.3 ± 25.7 mg·kg-1), and copper (65.0 ± 100.1 mg·kg-1) for grape pomace as well as a high proportion of zinc (277.0 ± 21.9 mg·kg-1) for the mealworm larvae. However, this mixture showed a small change in the heat flux response when analyzed with thermodynamic sensors (lower yeast activity and worse gas formation properties resulted from the sensor characteristic with a lower response). The 100% wheat flour had the highest response, and the second highest response was recorded for a mixture of wheat flour with 10% grape pomace and 10% mealworm larvae. This combination also often had one of the highest responses when measured with an experimental electronic nose, so this combination was considered as one of the most advantageous options for processing from the mixtures mentioned in the article.

16.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32365860

The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6-79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.

17.
Crit Rev Food Sci Nutr ; 60(19): 3271-3289, 2020.
Article En | MEDLINE | ID: mdl-31809581

Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.


Biosensing Techniques , Nanostructures , Wine , Food Packaging , Nanotechnology , Wine/analysis
18.
Nanomaterials (Basel) ; 9(11)2019 Oct 31.
Article En | MEDLINE | ID: mdl-31683686

AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.

19.
J Nanosci Nanotechnol ; 19(5): 2762-2769, 2019 05 01.
Article En | MEDLINE | ID: mdl-30501777

Silver nanoparticles are the most important nanoparticles in connection with the antimicrobial effect. Nowadays, the green synthesis of various types of nanoparticles is rapid, effective and produce less toxic nanoparticles often with specific properties. In our experiment we have developed and described in details various types of silver nanoparticles synthesized chemically or by the green synthesis. Nine different silver nanoparticles were synthesized, three by citrate method at different pHs (8; 9; 10), four using gallic acid at alkaline pHs (10; 11), and two by green synthesis using green tea and coffee extracts, both at pH 9. Characterisation of silver nanoparticles was performed using dynamic light scattering, scanning electron microscopy, and ultraviolet-visible absorption spectroscopy. Silver nanoparticles prepared by green synthesis showed the highest antioxidant activity and also ability for quenching of free radicals. Antibacterial activity of silver nanoparticles was determined on bacterial cultures such as Staphylococcus aureus and Escherichia coli. Silver nanoparticles synthesized using green tea and coffee extracts showed the highest antibacterial activity for both bacterial strains. Minimal inhibition concentration for both strains was found to be 65 µM at each silver nanoparticle synthesized using green synthesis.


Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Green Chemistry Technology , Microbial Sensitivity Tests , Plant Extracts , Silver/pharmacology
20.
Molecules ; 23(7)2018 Jul 11.
Article En | MEDLINE | ID: mdl-29997312

Wine consumption has been popular worldwide for many centuries. Based on in vitro and in vivo studies, a certain amount of everyday wine consumption may prevent various chronic diseases. This is due, in part, to the presence and amount of important antioxidants in red wine, and, therefore, research has focused on them. Wine polyphenols, especially resveratrol, anthocyanins, and catechins, are the most effective wine antioxidants. Resveratrol is active in the prevention of cardiovascular diseases by neutralizing free oxygen radicals and reactive nitrogenous radicals; it penetrates the blood-brain barrier and, thus, protects the brain and nerve cells. It also reduces platelet aggregation and so counteracts the formation of blood clots or thrombi. The main aim of this review is to summarize the current findings about the positive influence of wine consumption on human organ function, chronic diseases, and the reduction of damage to the cardiovascular system.


Alcohol Drinking , Health , Wine , Antioxidants/analysis , Antioxidants/chemistry , Humans , Protective Agents/pharmacology , Randomized Controlled Trials as Topic
...