Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (169)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33871447

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has democratized genome-editing in eukaryotic cells and led to the development of numerous innovative applications. However, delivery of the Cas9 protein and single-guide RNA (sgRNA) into target cells can be technically challenge. Classical viral vectors, such as those derived from lentiviruses (LVs) or adeno-associated viruses (AAVs), allow for efficient delivery of transgenes coding for the Cas9 protein and its associated sgRNA in many primary cells and in vivo. Nevertheless, these vectors can suffer from drawbacks such as integration of the transgene in the target cell genome, a limited cargo capacity, and long-term expression of the Cas9 protein and guide RNA in target cells. To overcome some of these problems, a delivery vector based on the murine Leukemia virus (MLV) was developed to package the Cas9 protein and its associated guide RNA in the absence of any coding transgene. By fusing the Cas9 protein to the C-terminus of the structural protein Gag from MLV, virus-like particles (VLPs) loaded with the Cas9 protein and sgRNA (named "Nanoblades") were formed. Nanoblades can be collected from the culture medium of producer cells, purified, quantified, and used to transduce target cells and deliver the active Cas9/sgRNA complex. Nanoblades deliver their ribonucleoprotein (RNP) cargo transiently and rapidly in a wide range of primary and immortalized cells and can be programmed for other applications, such as transient transcriptional activation of targeted genes, using modified Cas9 proteins. Nanoblades are capable of in vivo genome-editing in the liver of injected adult mice and in oocytes to generate transgenic animals. Finally, they can be complexed with donor DNA for "transfection-free" homology-directed repair. Nanoblade preparation is simple, relatively low-cost, and can be easily carried out in any cell biology laboratory.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Humanos , Transfección
2.
Mol Cell ; 74(1): 196-211.e11, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799147

RESUMEN

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV). Over 200 RBPs display differential interaction with RNA upon SINV infection. These alterations are mainly driven by the loss of cellular mRNAs and the emergence of viral RNA. RBPs stimulated by the infection redistribute to viral replication factories and regulate the capacity of the virus to infect. For example, ablation of XRN1 causes cells to be refractory to SINV, while GEMIN5 moonlights as a regulator of SINV gene expression. In summary, RNA availability controls RBP localization and function in SINV-infected cells.


Asunto(s)
Células Epiteliales/virología , Perfilación de la Expresión Génica/métodos , ARN Viral/genética , Proteínas de Unión al ARN/genética , Virus Sindbis/genética , Transcriptoma , Neoplasias del Cuello Uterino/virología , Regiones no Traducidas 5' , Sitios de Unión , Células Epiteliales/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Femenino , Regulación Viral de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Virus Sindbis/crecimiento & desarrollo , Virus Sindbis/metabolismo , Virus Sindbis/patogenicidad , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Replicación Viral
3.
Nat Commun ; 10(1): 45, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604748

RESUMEN

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Vectores Genéticos/genética , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/genética , Animales , Línea Celular Tumoral , Reparación del ADN/genética , Embrión de Mamíferos , Fibroblastos , Edición Génica/economía , Genoma/genética , Células HEK293 , Células Madre Hematopoyéticas , Humanos , Células Madre Pluripotentes Inducidas , Virus de la Leucemia Murina/genética , Macrófagos , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Activación Transcripcional/genética
4.
Methods ; 118-119: 137-145, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28286323

RESUMEN

Characterization of RNA-binding protein interactions with RNA became inevitable to properly understand the cellular mechanisms involved in gene expression regulation. Structural investigations bring information at the atomic level on these interactions and complementary methods such as Isothermal Titration Calorimetry (ITC) and Surface Plasmon Resonance (SPR) are commonly used to quantify the affinity of these RNA-protein complexes and evaluate the effect of mutations affecting these interactions. The switchSENSE technology has recently been developed and already successfully used to investigate protein interactions with different types of binding partners (DNA, protein/peptide or even small molecules). In this study, we show that this method is also well suited to study RNA binding proteins (RBPs). We could successfully investigate the binding to RNA of three different RBPs (Fox-1, SRSF1 and Tra2-ß1) and obtained KD values very close to the ones determined previously by SPR or ITC for these complexes. These results show that the switchSENSE technology can be used as an alternative method to study protein-RNA interactions with KD values in the low micromolar (10-6) to nanomolar (10-7-10-9) and probably picomolar (10-10-10-12) range. The absence of labelling requirement for the analyte molecules and the use of very low amounts of protein and RNA molecules make the switchSENSE approach very attractive compared to other methods. Finally, we discuss about the potential of this approach in obtaining more sophisticated information such as structural conformational changes upon RBP binding to RNA.


Asunto(s)
ADN de Cadena Simple/genética , Hibridación de Ácido Nucleico/métodos , Análisis por Matrices de Proteínas/métodos , Proteínas de Unión al ARN/genética , ARN/genética , Secuencia de Bases , Sitios de Unión , Calorimetría/métodos , ADN de Cadena Simple/metabolismo , Humanos , Cinética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis por Matrices de Proteínas/instrumentación , Unión Proteica , ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Resonancia por Plasmón de Superficie/métodos , Termodinámica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...