Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Am J Emerg Med ; 76: 272.e3-272.e5, 2024 Feb.
Article En | MEDLINE | ID: mdl-38072732

Hirayama disease is a self-limiting cervical motor neuron disease, usually affecting the spinal cord at level C7-T1. We share an unusual case of Hirayama disease in a young man affecting roots C4-C6. He presented in coma due to diaphragm weakness and hypercapnic respiratory failure. Diagnosis was achieved via clinical presentation, neurophysiological examination, ultrasonography of the diaphragm and dynamic MR-imaging. Conservative treatment with a cervical collar resulted in remarkable improvement in respiratory and motor function.


Respiratory Insufficiency , Spinal Cord Compression , Spinal Muscular Atrophies of Childhood , Male , Humans , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/therapy , Spinal Muscular Atrophies of Childhood/diagnosis , Magnetic Resonance Imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
2.
Tumour Biol ; 46(s1): S327-S340, 2024.
Article En | MEDLINE | ID: mdl-37270827

BACKGROUND: Anti-PD-(L)1 immunotherapy has emerged as a promising treatment approach for non-small cell lung cancer (NSCLC), though the response rates remain low. Pre-treatment response prediction may improve patient allocation for immunotherapy. Blood platelets act as active immune-like cells, thereby constraining T-cell activity, propagating cancer metastasis, and adjusting their spliced mRNA content. OBJECTIVE: We investigated whether platelet RNA profiles before start of nivolumab anti-PD1 immunotherapy may predict treatment responses. METHODS: We performed RNA-sequencing of platelet RNA samples isolated from stage III-IV NSCLC patients before treatment with nivolumab. Treatment response was scored by the RECIST-criteria. Data were analyzed using a predefined thromboSeq analysis including a particle-swarm-enhanced support vector machine (PSO/SVM) classification algorithm. RESULTS: We collected and processed a 286-samples cohort, separated into a training/evaluation and validation series and subjected those to training of the PSO/SVM-classification algorithm. We observed only low classification accuracy in the 107-samples validation series (area under the curve (AUC) training series: 0.73 (95% -CI: 0.63-0.84, n = 88 samples), AUC evaluation series: 0.64 (95% -CI: 0.51-0.76, n = 91 samples), AUC validation series: 0.58 (95% -CI: 0.45-0.70, n = 107 samples)), employing a five-RNAs biomarker panel. CONCLUSIONS: We concluded that platelet RNA may have minimally discriminative capacity for anti-PD1 nivolumab response prediction, with which the current methodology is insufficient for diagnostic application.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Nivolumab/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Blood Platelets/pathology , RNA/genetics
3.
Sci Rep ; 13(1): 9359, 2023 06 08.
Article En | MEDLINE | ID: mdl-37291189

Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Algorithms , RNA/metabolism , Blood Platelets/metabolism , Hematologic Tests
4.
Protein Cell ; 14(6): 579-590, 2023 06 07.
Article En | MEDLINE | ID: mdl-36905391

Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.


Blood Platelets , Ovarian Neoplasms , Humans , Female , Blood Platelets/pathology , Biomarkers, Tumor/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , China
5.
Neurooncol Adv ; 4(Suppl 2): ii61-ii65, 2022 Nov.
Article En | MEDLINE | ID: mdl-36380866

Blood-based liquid biopsies are an upcoming approach for earlier cancer detection, diagnostics, prognostics, therapy-response prediction, and therapy monitoring, including in patients with tumors of the central nervous system. Among these, liquid biopsies are plasma-derived markers such as cell-free DNA, RNA and proteins, extracellular vesicles, circulating glioma cells, immune cells, and blood platelets. Blood platelets are involved in the local and systemic response to the presence of cancer, thereby sequestering and splicing RNAs, which may be clinically useful as blood-based biomarkers. In this review, we discuss the available literature regarding the role of blood platelets in gliomas and provide suggestions for future research efforts.

6.
Ann Am Thorac Soc ; 19(10): 1650-1660, 2022 10.
Article En | MEDLINE | ID: mdl-35537078

Rationale: Pulmonary hypertension encompasses progressive disorders leading to right ventricular dysfunction and early death. Late detection is an important cause of poor clinical outcomes. However, biomarkers that accurately predict the presence of pulmonary hypertension are currently lacking. Objectives: In this study, we provide evidence that blood platelets contain a distinctive ribonucleic acid (RNA) profile that may be exploited for the detection of pulmonary hypertension. Methods: Blood platelet RNA was isolated prospectively from 177 prevalent patients with different subtypes of pulmonary hypertension as well as 195 control subjects clinically not suspected of pulmonary hypertension. Sequencing libraries were created using SMARTer (Switching Mechanism at 5' end of RNA Template) copy desoxyribonucleic acid amplification and sequenced on the Illumina High Throughput Sequencing platform. RNA-sequencing reads were mapped to the human reference genome, and intron-spanning spliced RNA reads were selected. Differential spliced RNA panels were calculated by analysis of variance statistics. A particle swarm optimization-enhanced classification algorithm was built employing a development (n = 213 samples) and independent validation series (n = 159 samples). Results: We detected a total of 4,014 different RNAs in blood platelets from patients with pulmonary hypertension (n = 177) and asymptomatic control subjects (n = 195). Gene ontology analysis revealed enhanced RNA concentrations for genes related to RNA processing, translation, and mitochondrial function. A particle swarm optimization-selected RNA panel of 408 distinctive differentially spliced RNAs mediated detection of pulmonary hypertension with 93% sensitivity, 62% specificity, 77% accuracy, 0.89 (95% confidence interval, 0.83-0.93) area under the curve, and a negative predictive value of 91% in the independent validation series. The prediction score was independent of age, sex, smoking, pulmonary hypertension subtype, and the use of pulmonary hypertension-specific medication or anticoagulants. Conclusions: A platelet RNA panel may accurately discriminate patients with pulmonary hypertension from asymptomatic control subjects. In the light of current diagnostic delays, this study is the starting point for further development and evaluation of a platelet RNA-based blood test to ultimately improve early diagnosis and clinical outcomes in patients with pulmonary hypertension.


Blood Platelets , Hypertension, Pulmonary , Anticoagulants , Biomarkers , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , RNA/genetics
7.
Cancers (Basel) ; 13(18)2021 Sep 16.
Article En | MEDLINE | ID: mdl-34572871

Tumor-educated Platelets (TEPs) have emerged as rich biosources of cancer-related RNA profiles in liquid biopsies applicable for cancer detection. Although human blood platelets have been found to be enriched in circular RNA (circRNA), no studies have investigated the potential of circRNA as platelet-derived biomarkers for cancer. In this proof-of-concept study, we examine whether the circRNA signature of blood platelets can be used as a liquid biopsy biomarker for the detection of non-small cell lung cancer (NSCLC). We analyzed the total RNA, extracted from the platelet samples collected from NSCLC patients and asymptomatic individuals, using RNA sequencing (RNA-Seq). Identification and quantification of known and novel circRNAs were performed using the accurate CircRNA finder suite (ACFS), followed by the differential transcript expression analysis using a modified version of our thromboSeq software. Out of 4732 detected circRNAs, we identified 411 circRNAs that are significantly (p-value < 0.05) differentially expressed between asymptomatic individuals and NSCLC patients. Using the false discovery rate (FDR) of 0.05 as cutoff, we selected the nuclear receptor-interacting protein 1 (NRIP1) circRNA (circNRIP1) as a potential biomarker candidate for further validation by reverse transcription-quantitative PCR (RT-qPCR). This analysis was performed on an independent cohort of platelet samples. The RT-qPCR results confirmed the RNA-Seq data analysis, with significant downregulation of circNRIP1 in platelets derived from NSCLC patients. Our findings suggest that circRNAs found in blood platelets may hold diagnostic biomarkers potential for the detection of NSCLC using liquid biopsies.

8.
Cell Rep Med ; 1(7): 100101, 2020 10 20.
Article En | MEDLINE | ID: mdl-33103128

Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74-0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95-0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70-1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.


Blood Platelets/metabolism , Brain Neoplasms/diagnosis , Glioblastoma/diagnosis , Monitoring, Physiologic/methods , Multiple Sclerosis/diagnosis , RNA, Neoplasm/genetics , Adult , Aged , Aged, 80 and over , Algorithms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blood Platelets/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/surgery , Case-Control Studies , Disease Progression , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/surgery , Humans , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neoplasm Metastasis , RNA Splicing , RNA, Neoplasm/metabolism , ROC Curve , Survival Analysis , Tumor Microenvironment/genetics
9.
Mult Scler J Exp Transl Clin ; 6(3): 2055217320946784, 2020.
Article En | MEDLINE | ID: mdl-32843989

BACKGROUND: In multiple sclerosis (MS), clinical assessment, MRI and cerebrospinal fluid are important in the diagnostic process. However, no blood biomarker has been confirmed as a useful tool in the diagnostic work-up. OBJECTIVES: Blood platelets contain a rich spliced mRNA repertoire that can alter during megakaryocyte development but also during platelet formation and platelet circulation. In this proof of concept study, we evaluate the diagnostic potential of spliced blood platelet RNA for the detection of MS. METHODS: We isolated and sequenced platelet RNA of blood samples obtained from 57 MS patients and 66 age- and gender-matched healthy controls (HCs). 60% was used to develop a particle swarm-optimized (PSO) support vector machine classification algorithm. The remaining 40% served as an independent validation series. RESULTS: In total, 1249 RNAs with differential spliced junction expression levels were identified between platelets of MS patients as compared to HCs, including EPSTI1, IFI6, and RPS6KA3, in line with reported inflammatory signatures in the blood of MS patients. The RNAs were subsequently used as input for a MS classifier, capable of detecting MS with 80% accuracy in the independent validation series. CONCLUSIONS: Spliced platelet RNA may enable the blood-based diagnosis of MS, warranting large-scale validation.

10.
Cancers (Basel) ; 12(6)2020 May 27.
Article En | MEDLINE | ID: mdl-32471035

Sarcoma is a heterogeneous group of rare malignancies arising from mesenchymal tissues. Recurrence rates are high and methods for early detection by blood-based biomarkers do not exist. Hence, development of blood-based liquid biopsies as disease recurrence monitoring biomarkers would be an important step forward. Recently, it has been shown that tumor-educated platelets (TEPs) harbor specific spliced ribonucleic acid(RNA)-profiles. These RNA-repertoires are potentially applicable for cancer diagnostics. We aim to evaluate the potential of TEPs for blood-based diagnostics of sarcoma patients. Fifty-seven sarcoma patients (active disease), 38 former sarcoma patients (cancer free for ≥3 years) and 65 healthy donors were included. RNA was isolated from platelets and sequenced. Quantified read counts were processed with self-learning particle-swarm optimization-enhanced thromboSeq analysis and subjected to analysis of variance (ANOVA) statistics. Highly correlating spliced platelet messenger RNAs (mRNAs) of sarcoma patients were compared to controls (former sarcoma + healthy donors) to identify a quantitative sarcoma-specific signature measure, the TEP-score. ANOVA analysis identified distinctive platelet RNA expression patterns of 2647 genes (false discovery rate <0.05) in sarcoma patients as compared to controls. The self-learning algorithm reached a diagnostic accuracy of 87% (validation set only; n = 53 samples, area under the curve (AUC): 0.93, 95% confidence interval (CI): 0.86-1). Our data indicates that TEP RNA-based liquid biopsies may enable for sarcoma diagnostics.

11.
Nat Protoc ; 14(4): 1206-1234, 2019 04.
Article En | MEDLINE | ID: mdl-30894694

Blood-based diagnostics tests, using individual or panels of biomarkers, may revolutionize disease diagnostics and enable minimally invasive therapy monitoring. However, selection of the most relevant biomarkers from liquid biosources remains an immense challenge. We recently presented the thromboSeq pipeline, which enables RNA sequencing and cancer classification via self-learning and swarm intelligence-enhanced bioinformatics algorithms using blood platelet RNA. Here, we provide the wet-lab protocol for the generation of platelet RNA-sequencing libraries and the dry-lab protocol for the development of swarm intelligence-enhanced machine-learning-based classification algorithms. The wet-lab protocol includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. This protocol enables platelet RNA profiling from 500 pg of platelet RNA and allows automated and optimized biomarker panel selection. The wet-lab protocol can be performed in 5 d before sequencing, and the algorithm development can be completed in 2 d, depending on computational resources. The protocol requires basic molecular biology skills and a basic understanding of Linux and R. In all, with this protocol, we aim to enable the scientific community to test platelet RNA for diagnostic algorithm development.


Blood Platelets/metabolism , DNA, Complementary/analysis , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , Support Vector Machine/statistics & numerical data , Biomarkers/blood , Blood Platelets/chemistry , Computational Biology/methods , DNA, Complementary/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , RNA Splicing , RNA, Messenger/genetics , Sequence Analysis, RNA/statistics & numerical data
12.
Semin Thromb Hemost ; 44(2): 135-141, 2018 Mar.
Article En | MEDLINE | ID: mdl-28905353

Platelets are involved in several steps of cancer metastasis. During this process, platelets are exposed to the tumor and its environment, thereby exchanging biomolecules with the tumor cells and resulting in tumor-mediated "education" of the platelets and a change in their RNA profile. Analysis of platelet RNA profiles or direct measurement of tumor-derived biomarkers within platelets can provide information on ongoing cancer-related processes in the individual (e.g., whether the patient has cancer, the tumor type, and possibly identify oncogenic alterations driving the disease for treatment selection). The close interaction with the disease process and the ability to respond to systemic alterations make platelets an interesting biosource for implementation in precision medicine.


Blood Platelets/metabolism , Neoplasms/blood , RNA/blood , Humans , Neoplasms/diagnosis
13.
Cancer Cell ; 32(2): 238-252.e9, 2017 08 14.
Article En | MEDLINE | ID: mdl-28810146

Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources.


Algorithms , Artificial Intelligence , Blood Platelets/physiology , Carcinoma, Non-Small-Cell Lung/diagnosis , Diagnosis, Computer-Assisted/methods , Lung Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Cohort Studies , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/genetics , Lung Neoplasms/blood , Lung Neoplasms/genetics , Male , Middle Aged , Support Vector Machine
14.
Cancer Metastasis Rev ; 36(2): 263-272, 2017 06.
Article En | MEDLINE | ID: mdl-28681241

Platelets are equipped with RNA processing machineries, such as pre-mRNA splicing, pre-miRNA processing, and mRNA translation. Since platelets are devoid of a nucleus, most RNA transcripts in platelets are derived from megakaryocytes during thrombocytogenesis. However, platelets can also ingest RNA molecules during circulation and/or interaction with other cell types. Since platelets were first described by Bizzozero in 1881, their well-established role in hemostasis and thrombosis has been intensively studied. However, in the past decades, the list of biological processes in which platelets play an important role keeps expanding. In this review, we discuss how platelet RNA biomarker signatures can be altered in the presence of cancer.


Blood Platelets/physiology , Neoplasms/blood , Neoplasms/genetics , RNA, Neoplasm/blood , Animals , Blood Platelets/pathology , Humans , Neoplasms/diagnosis , Neoplasms/pathology
16.
Cancer Cell ; 28(5): 666-676, 2015 Nov 09.
Article En | MEDLINE | ID: mdl-26525104

Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies".


Biomarkers, Tumor/genetics , Blood Platelets/metabolism , Neoplasms/genetics , Signal Transduction/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Class I Phosphatidylinositol 3-Kinases , ErbB Receptors/genetics , Female , Gene Expression Profiling/methods , Gene Ontology , Humans , Male , Middle Aged , Mutation , Neoplasms/blood , Neoplasms/diagnosis , Pathology, Molecular/methods , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, RNA/methods , Support Vector Machine , Young Adult
17.
Acta Neuropathol ; 129(6): 849-65, 2015 Jun.
Article En | MEDLINE | ID: mdl-25720744

Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.


Biopsy/methods , Brain Neoplasms/diagnosis , Glioma/diagnosis , Biomarkers, Tumor/metabolism , Humans
18.
J Extracell Vesicles ; 3: 25657, 2014.
Article En | MEDLINE | ID: mdl-25491250

BACKGROUND: Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. METHODS: EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. RESULTS: In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). CONCLUSION: Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer.

19.
J Natl Cancer Inst ; 105(17): 1322-31, 2013 Sep 04.
Article En | MEDLINE | ID: mdl-23940287

BACKGROUND: Glioblastomas exhibit a high level of chemotherapeutic resistance, including to the antimitotic agents vincristine and taxol. During the mitotic agent-induced arrest, glioblastoma cells are able to perform damage-control and self-repair to continue proliferation. Monopolar spindle 1 (MPS1/TTK) is a checkpoint kinase and a gatekeeper of the mitotic arrest. METHODS: We used glioblastoma cells to determine the expression of MPS1 and to determine the effects of MPS1 inhibition on mitotic errors and cell viability in combination with vincristine and taxol. The effect of MPS1 inhibition was assessed in different orthotopic glioblastoma mouse models (n = 3-7 mice/group). MPS1 expression levels were examined in relation to patient survival. RESULTS: Using publicly available gene expression data, we determined that MPS1 overexpression corresponds positively with tumor grade and negatively with patient survival (two-sided t test, P < .001). Patients with high MPS1 expression (n = 203) had a median and mean survival of 487 and 913 days (95% confidence intervals [CI] = 751 to 1075), respectively, and a 2-year survival rate of 35%, whereas patients with intermediate MPS1 expression (n = 140) had a median and mean survival of 858 and 1183 days (95% CI = 1177 to 1189), respectively, and a 2-year survival rate of 56%. We demonstrate that MPS1 inhibition by RNAi results in sensitization to antimitotic agents. We developed a selective small-molecule inhibitor of MPS1, MPS1-IN-3, which caused mitotic aberrancies in glioblastoma cells and, in combination with vincristine, induced mitotic checkpoint override, increased aneuploidy, and augmented cell death. MPS1-IN-3 sensitizes glioblastoma cells to vincristine in orthotopic mouse models (two-sided log-rank test, P < .01), resulting in prolonged survival without toxicity. CONCLUSIONS: Our results collectively demonstrate that MPS1, a putative therapeutic target in glioblastoma, can be selectively inhibited by MPS1-IN-3 sensitizing glioblastoma cells to antimitotic drugs.


2-Aminopurine/analogs & derivatives , Antimitotic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Glioblastoma/drug therapy , M Phase Cell Cycle Checkpoints/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , ortho-Aminobenzoates/pharmacology , 2-Aminopurine/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Survival/drug effects , Drug Resistance, Neoplasm , France , Frozen Sections , Gene Expression Regulation, Neoplastic , Glioblastoma/mortality , Humans , M Phase Cell Cycle Checkpoints/genetics , Mice , Mice, Nude , Netherlands , Paclitaxel/administration & dosage , RNA Interference/drug effects , United States , Up-Regulation , Vincristine/administration & dosage , Xenograft Model Antitumor Assays
...