Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
NPJ Vaccines ; 8(1): 189, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135685

RESUMEN

Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.

3.
J Med Chem ; 65(22): 15066-15084, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36346645

RESUMEN

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. (E)-2-(5-Hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA (1i) with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.


Asunto(s)
Benzocicloheptenos , Encéfalo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Animales , Ratones , Benzocicloheptenos/farmacología , Sitios de Unión , Encéfalo/metabolismo , Unión Proteica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores
4.
J Med Chem ; 65(21): 14481-14526, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36263945

RESUMEN

Targeting the protein-protein interaction (PPI) between the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its repressor, Kelch-like ECH-associated protein 1 (Keap1), constitutes a promising strategy for treating diseases involving oxidative stress and inflammation. Here, a fragment-based drug discovery (FBDD) campaign resulted in novel, high-affinity (Ki = 280 nM), and cell-active noncovalent small-molecule Keap1-Nrf2 PPI inhibitors. We screened 2500 fragments using orthogonal assays─fluorescence polarization (FP), thermal shift assay (TSA), and surface plasmon resonance (SPR)─and validated the hits by saturation transfer difference (STD) NMR, leading to 28 high-priority hits. Thirteen co-structures showed fragments binding mainly in the P4 and P5 subpockets of Keap1's Kelch domain, and three fluorenone-based fragments featuring a novel binding mode were optimized by structure-based drug discovery. We thereby disclose several fragment hits, including their binding modes, and show how FBDD can be performed to find new small-molecule Keap1-Nrf2 PPI inhibitors.


Asunto(s)
Descubrimiento de Drogas , Factor 2 Relacionado con NF-E2 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Descubrimiento de Drogas/métodos , Estrés Oxidativo
5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330837

RESUMEN

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Oxibato de Sodio/metabolismo , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ácidos Carboxílicos/farmacología , Cristalografía por Rayos X , Ciclopentanos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neuroprotección , Unión Proteica , Dominios Proteicos , Transducción de Señal
6.
J Med Chem ; 64(8): 4623-4661, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33818106

RESUMEN

Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 µM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 µM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Cristalografía por Rayos X , Estabilidad de Medicamentos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Microsomas/metabolismo , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
7.
ChemMedChem ; 16(6): 949-954, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33305877

RESUMEN

Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1 H,15 N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Evaluación Preclínica de Medicamentos , Polarización de Fluorescencia , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Dominios PDZ/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
8.
Sci Adv ; 6(42)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33055165

RESUMEN

Polyubiquitin chains are flexible multidomain proteins, whose conformational dynamics enable them to regulate multiple biological pathways. Their dynamic is determined by the linkage between ubiquitins and by the number of ubiquitin units. Characterizing polyubiquitin behavior as a function of their length is hampered because of increasing system size and conformational variability. Here, we introduce a new approach to efficiently integrating small-angle x-ray scattering with simulations allowing us to accurately characterize the dynamics of linear di-, tri-, and tetraubiquitin in the free state as well as of diubiquitin in complex with NEMO, a central regulator in the NF-κB pathway. Our results show that the behavior of the diubiquitin subunits is independent of the presence of additional ubiquitin modules and that the dynamics of polyubiquitins with different lengths follow a simple model. Together with experimental data from multiple biophysical techniques, we then rationalize the 2:1 NEMO:polyubiquitin binding.

9.
J Med Chem ; 62(17): 8028-8052, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31411465

RESUMEN

Inhibiting the protein-protein interaction (PPI) between the transcription factor Nrf2 and its repressor protein Keap1 has emerged as a promising strategy to target oxidative stress in diseases, including central nervous system (CNS) disorders. Numerous non-covalent small-molecule Keap1-Nrf2 PPI inhibitors have been reported to date, but many feature suboptimal physicochemical properties for permeating the blood-brain barrier, while others contain problematic structural moieties. Here, we present the first side-by-side assessment of all reported Keap1-Nrf2 PPI inhibitor classes using fluorescence polarization, thermal shift assay, and surface plasmon resonance-and further evaluate the compounds in an NQO1 induction cell assay and in counter tests for nonspecific activities. Surprisingly, half of the compounds were inactive or deviated substantially from reported activities, while we confirm the cross-assay activities for others. Through this study, we have identified the most promising Keap1-Nrf2 inhibitors that can serve as pharmacological probes or starting points for developing CNS-active Keap1 inhibitors.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Modelos Moleculares , Estructura Molecular , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
10.
Virol J ; 14(1): 236, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29228983

RESUMEN

BACKGROUND: Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy. METHODS: Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition. RESULTS: No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (K D = 30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences. CONCLUSIONS: The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors.


Asunto(s)
Anexina A2/metabolismo , Hepacivirus/enzimología , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Animales , Anexina A2/genética , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Cinética , Unión Proteica/efectos de los fármacos , Pironas/farmacología , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Triazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores
11.
Biochim Biophys Acta ; 1834(2): 568-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23220419

RESUMEN

The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof. The amino acid residues 30-70 of PR8 PB1-F2 were found to be responsible for amyloid formation of the protein, which could be assigned to formation of ß-sheet structures, although α-helices were the only structural features detected under conditions that mimic a membranous environment. At membranous conditions, in which the proteins are found in their most structured state, significant differences become apparent between the PB1-F2 variants investigated. In contrast to Pandemic flu 2009 H1N1 and PR8 PB1-F2, which exhibit a continuous extensive C-terminal α-helix, both Spanish flu H1N1 and Bird flu H5N1 PB1-F2 contain a loop region with residues 66-71 that divides the C-terminus into two shorter helices. The observed structural differences are located to the C-terminal ends of the proteins to which most of the known functions of these proteins have been assigned. A C-terminal helix-loop-helix motif might be a structural signature for PB1-F2 of the highly pathogenic influenza viruses as observed for 1918 Spanish flu H1N1 and Bird flu H5N1 PB1-F2. This signature could indicate the pathological nature of viruses emerging in the future and thus aid in the recognition of these viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/química , Proteínas Virales/química , Amiloide/química , Amiloide/genética , Secuencias Hélice-Asa-Hélice , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Especificidad de la Especie , Proteínas Virales/genética
12.
J Gen Virol ; 93(Pt 8): 1756-1768, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22552943

RESUMEN

The multifunctional protein kinase pUL97 of human cytomegalovirus (HCMV) strongly determines the efficiency of virus replication. Previously, the existence of two pUL97 isoforms that arise from alternative translational initiation and show a predominant nuclear localization was described. Two bipartite nuclear localization sequences, NLS1 and NLS2, were identified in the N terminus of the large isoform, whilst the small isoform exclusively contained NLS2. The current study found the following: (i) pUL97 nuclear localization in HCMV-infected primary fibroblasts showed accumulations in virus replication centres and other nuclear sections; (ii) in a quantitative evaluation system for NLS activity, the large isoform showed higher efficiency of nuclear translocation than the small isoform; (iii) NLS1 was mapped to aa 6-35 and NLS2 to aa 190-213; (iv) using surface plasmon resonance spectroscopy, the binding of both NLS1 and NLS2 to human importin-α was demonstrated, stressing the importance of individual arginine residues in the bipartite consensus motifs; (v) nuclear magnetic resonance spectroscopy of pUL97 peptides confirmed an earlier statement about the functional requirement of NLS1 embedding into an intact α-helical structure; and (vi) a bioinformatics investigation of the solvent-accessible surface suggested a high accessibility of NLS1 and an isoform-specific, variable accessibility of NLS2 for interaction with importin-α. Thus, the nucleocytoplasmic transport mechanism of the isoforms appeared to be differentially regulated, and this may have consequences for isoform-dependent functions of pUL97 during virus replication.


Asunto(s)
Citomegalovirus/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Señales de Localización Nuclear , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Simulación por Computador , Citomegalovirus/genética , Fibroblastos/metabolismo , Humanos , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , alfa Carioferinas/genética
13.
Biochim Biophys Acta ; 1824(4): 667-78, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22342556

RESUMEN

The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.


Asunto(s)
Ciclofilina A/química , VIH-1/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Secuencia de Aminoácidos , Dominio Catalítico , VIH-1/enzimología , Interacciones Huésped-Patógeno , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Cinética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Solventes/química , Resonancia por Plasmón de Superficie
14.
BMC Struct Biol ; 11: 49, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185200

RESUMEN

BACKGROUND: Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. RESULTS: Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. CONCLUSIONS: For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.


Asunto(s)
Ciclofilina A/metabolismo , VIH-1/fisiología , Interacciones Huésped-Patógeno , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , VIH-1/metabolismo , Humanos , Modelos Moleculares , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
15.
Retrovirology ; 8: 11, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21324168

RESUMEN

BACKGROUND: The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. RESULTS: Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF) reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA) and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. CONCLUSIONS: Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively affects CA maturation and virus core formation, and consequently the infectivity of released virions.


Asunto(s)
Cápside/metabolismo , Serina/genética , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Línea Celular , Células Cultivadas , Regulación Viral de la Expresión Génica , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Mutación , Linfocitos T , Virión/metabolismo , Virión/ultraestructura , Liberación del Virus , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...