Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(10): 5409-5419, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38424003

RESUMEN

In this paper, the potential of esterified Kraft lignin as a novel oil-soluble surfactant was examined. The lignin was chemically modified by esterification with lauric or stearic acid, making it soluble in solvents such as toluene or n-decane. Adsorption at the oil-water interface was then studied by the Du Noüy ring-method. The oil-soluble lignin behaved similar to water-soluble lignin surfactants, both the qualitative and quantitative progression of interfacial tension. Modeling revealed a surface excess of 7.5-9.0 × 10-7 mol/m2, area per molecule of 185-222 Å2, and a diffusion coefficient within the range 10-10 to 10-14 m2/s; all of which are in line with existing literature on water-soluble lignosulfonates. The data further suggested that the pendant alkyl chains were extended well into the paraffinic solvent. At last, bottle tests showed that the oil-soluble lignin was able to stabilize oil-in-water emulsions. The emulsion stability was affected by the concentration of lignin or NaCl as well as the oil phase composition. Aromatic oils exhibited lower emulsion stability in comparison to the aliphatic oil. In conclusion, a new type of surfactant was synthesized and studied, which may contribute to developing green surfactants and novel approaches to valorize technical lignin.

2.
J Mech Behav Biomed Mater ; 147: 106136, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774439

RESUMEN

New bone repair materials are needed for treatment of trauma- and disease-related skeletal defects as they still represent a major challenge in clinical practice. Additionally, new strategies are required to combat orthopedic device-related infections (ODRI), given the rising incidence of total joint replacement and fracture fixation surgeries in increasingly elderly populations. Recently, the convergence of additive manufacturing (AM) and bone tissue engineering (BTE) has facilitated the development of bone healthcare to achieve personalized three-dimensional (3D) scaffolds. This study focused on the development of a 3D printable bone repair material, based on the biopolymers poly(lactic acid) (PLA) and chitosan. Two different types of PLA and chitosan differing in their molecular weight (MW) were explored. The novel feature of this research was the successful 3D printing using biocomposite filaments composed of PLA and 10 wt% chitosan, with clear chitosan entrapment within the PLA matrix confirmed by Scanning Electron Microscopy (SEM) images. Tensile testing of injection molded samples indicated an increase in stiffness, compared to pure PLA scaffolds, suggesting potential for improved load-bearing characteristics in bone scaffolds. However, the potential benefit of chitosan on the biocomposite stiffness could not be reproduced in compression testing of 3D printed cylinders. The antibacterial assays confirmed antibacterial activity of chitosan when dissolved in acetic acid. The study also verified the biodegradability of the scaffolds, with a process producing an acidic environment that could potentially be neutralized by chitosan. In conclusion, the study indicated the feasibility of the proposed PLA/chitosan biocomposite for 3D printing, demonstrating adequate mechanical strength, antibacterial properties and biodegradability, which could serve as a new material for bone repair.

3.
Bioengineering (Basel) ; 10(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37370613

RESUMEN

Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.

4.
Carbohydr Polym ; 314: 120923, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173022

RESUMEN

To commercialize a biomedical product as a medical device, reproducibility of production and time-stability are important parameters. Studies of reproducibility are lacking in the literature. Additionally, chemical pre-treatments of wood fibres to produce highly fibrillated cellulose nanofibrils (CNF) seem to be demanding in terms of production efficiency, being a bottleneck for industrial upscaling. In this study, we evaluated the effect of pH on the dewatering time and washing steps of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO)-mediated oxidized wood fibres when applying 3.8 mmol NaClO/g cellulose. The results indicate that the method does not affect the carboxylation of the nanocelluloses, and levels of approximately 1390 µmol/g were obtained with good reproducibility. The washing time of a Low-pH sample was reduced to 1/5 of the time required for washing a Control sample. Additionally, the stability of the CNF samples was assessed over 10 months and changes were quantified, the most pronounced were the increase of potential residual fibre aggregates, reduction of viscosity and increase of carboxylic acid content. The cytotoxicity and skin irritation potential were not affected by the detected differences between the Control and Low-pH samples. Importantly, the antibacterial effect of the carboxylated CNFs against S. aureus and P. aeruginosa was confirmed.


Asunto(s)
Staphylococcus aureus , Cicatrización de Heridas , Reproducibilidad de los Resultados , Hidrogeles/química , Celulosa/farmacología , Celulosa/química , Pseudomonas aeruginosa
5.
Carbohydr Polym ; 278: 118840, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973722

RESUMEN

Engineered block polysaccharides is a relatively new class of biomacromolecules consisting of chemical assembly of separate block structures at the chain termini. In contrast to conventional, laterally substituted polysaccharide derivatives, the block arrangement allows for much higher preservation of inherent chain properties such as biodegradability and stimuli-responsive self-assembly, while at the same time inducing new macromolecular properties. Abundant, carbon neutral, and even recalcitrant biomass is an excellent source of blocks, opening for numerous new uses of biomass for a wide range of novel biomaterials. Among a limited range of methodologies available for block conjugation, bifunctional linkers allowing for oxyamine and hydrazide 'click' reactions have recently proven useful additions to the repertoire. This article focuses the chemistry and kinetics of these reactions. It also presents some new data with the aim to provide useful protocols and methods for general use towards new block polysaccharides.


Asunto(s)
Aminas/farmacología , Hidrazonas/farmacología , Polisacáridos/antagonistas & inhibidores , Aminas/química , Conformación de Carbohidratos , Química Clic , Hidrazonas/química
6.
8.
Carbohydr Polym ; 232: 115748, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952580

RESUMEN

Reducing end activation of poly- and oligosaccharides by bifunctional dioxyamines and dihydrazides enables aniline-free and cyanoborohydride-free conjugation to aldehyde-containing molecules, particles and surfaces without compromising the chain structure. Chitosans are due to their polycationic character, biodegradability, and bioactivity important candidates for conjugation. Here, we present a kinetic and structural study of the conjugation of a dioxyamine and a dihydrazide to enzymatically produced chitooligosaccharides ranging from N,N'-diacetylchitobiose to a decamer, all having N-acetyl d-glucosamine at the reducing end. Conjugation of the dioxyamine resulted in mixtures of (E)- and (Z)-oximes and ß-N-pyranoside, whereas the dihydrazide yielded cyclic N-glycosides. Reaction kinetics was essentially independent of DP. Stable secondary amines were in both cases obtained by reduction with α-picoline borane, but higher temperatures were needed to obtain acceptable reduction rate. Comparison to dextran oligomers shows that the nature of the reducing end strongly influences the kinetics of both the conjugation and reduction.

9.
J Biol Chem ; 294(47): 17915-17930, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31530640

RESUMEN

Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked ß-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel ß-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel ß-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.


Asunto(s)
Bacteroides/enzimología , Microbioma Gastrointestinal , Ácidos Hexurónicos/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Alginatos/química , Alginatos/metabolismo , Bacteroides/genética , Genoma Bacteriano , Humanos , Cinética , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Secundaria de Proteína , Electricidad Estática , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...