Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37444601

RESUMEN

WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.

2.
Front Immunol ; 13: 847008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464442

RESUMEN

The great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, off-the-shelf usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient. However, in contrast to T cells, manufacturing suitable CAR NK cell products is challenging, as standard techniques for genetically engineering NK cells are still being defined. In this study, we have established optimal lentiviral transduction of primary human NK cells by systematically testing different internal promoters for lentiviral CAR vectors and comparing lentiviral pseudotypes and viral entry enhancers. We have additionally modified CAR constructs recognizing standard target antigens for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) therapy-CD19, CD33, and CD123-to harbor a CD34-derived hinge region that allows efficient detection of transduced NK cells in vitro and in vivo and also facilitates CD34 microbead-assisted selection of CAR NK cell products to >95% purity for potential clinical usage. Importantly, as most leukemic blasts are a priori immunogenic for activated primary human NK cells, we developed an in vitro system that blocks the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46, and NKp80 on these cells and therefore allows systematic testing of the specific killing of CAR NK cells against ALL and AML cell lines and primary AML blasts. Finally, we evaluated in an ALL xenotransplantation model in NOD/SCID-gamma (NSG) mice whether human CD19 CAR NK cells directed against the CD19+ blasts are relying on soluble or membrane-bound IL15 production for NK cell persistence and also in vivo leukemia control. Hence, our study provides important insights into the generation of pure and highly active allogeneic CAR NK cells, thereby advancing adoptive cellular immunotherapy with CAR NK cells for human malignancies further.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Línea Celular Tumoral , Ingeniería Genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
3.
Ann Hematol ; 98(3): 595-603, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30673813

RESUMEN

Despite high remission rates, almost 25% of patients with AML will suffer relapse 3-5 years after diagnosis. Therefore, in addition to existing diagnostic and MRD detection tools, there is still a need for the development of novel approaches that can provide information on the state of the disease. Extracellular vesicles (EVs), containing genetic material reflecting the status of the parental cell, have gained interest in recent years as potential diagnostic biomarkers in cancer. Therefore, isolation and characterization of blood and bone marrow plasma-derived EVs from pediatric AML patients could be an additional approach in AML diagnostics and disease monitoring. In this study, we attempt to establish a plasma EV-RNA-based method to detect leukemia-specific FLT3-ITD and NPM1 mutations using established leukemia cell lines and primary pediatric AML plasma samples. We were successfully able to detect FLT3-ITD and NPM1 mutations in the EV-RNA using GeneScan-based fragment-length analysis and real-time PCR assays, respectively, in samples before therapy. This was corresponding to the gDNA mutational analysis from leukemic blasts, and supports the potential of using EV-RNA as a diagnostic biomarker in pediatric AML.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Adulto , Animales , Antraciclinas/uso terapéutico , Cladribina/uso terapéutico , Citarabina/uso terapéutico , Supervivencia sin Enfermedad , Humanos , Leucemia Mieloide Aguda/mortalidad , Nucleofosmina , Inducción de Remisión , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA