Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuro Oncol ; 26(4): 625-639, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37936324

RESUMEN

BACKGROUND: Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS: Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS: High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS: We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Integrinas/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/patología , Invasividad Neoplásica , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
2.
Neuro Oncol ; 25(12): 2150-2162, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335907

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive and infiltrative growth, and by striking heterogeneity. The aim of this study was to investigate whether tumor cell proliferation and invasion are interrelated, or rather distinct features of different cell populations. METHODS: Tumor cell invasion and proliferation were longitudinally determined in real-time using 3D in vivo 2-photon laser scanning microscopy over weeks. Glioblastoma cells expressed fluorescent markers that permitted the identification of their mitotic history or their cycling versus non-cycling cell state. RESULTS: Live reporter systems were established that allowed us to dynamically determine the invasive behavior, and previous or actual proliferation of distinct glioblastoma cells, in different tumor regions and disease stages over time. Particularly invasive tumor cells that migrated far away from the main tumor mass, when followed over weeks, had a history of marked proliferation and maintained their proliferative capacity during brain colonization. Infiltrating cells showed fewer connections to the multicellular tumor cell network, a typical feature of gliomas. Once tumor cells colonized a new brain region, their phenotype progressively transitioned into tumor microtube-rich, interconnected, slower-cycling glioblastoma cells. Analysis of resected human glioblastomas confirmed a higher proliferative potential of tumor cells from the invasion zone. CONCLUSIONS: The detection of glioblastoma cells that harbor both particularly high proliferative and invasive capabilities during brain tumor progression provides valuable insights into the interrelatedness of proliferation and migration-2 central traits of malignancy in glioma. This contributes to our understanding of how the brain is efficiently colonized in this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Invasividad Neoplásica/genética , Neoplasias Encefálicas/patología , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
3.
Cancer Res ; 83(8): 1299-1314, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36652557

RESUMEN

Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE: Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.


Asunto(s)
Neoplasias Encefálicas , Endotelio Vascular , Humanos , Endotelio Vascular/patología , Células Endoteliales/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral
4.
Nature ; 613(7942): 179-186, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517594

RESUMEN

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Señalización del Calcio , Muerte Celular , Análisis de Supervivencia , Calcio/metabolismo
5.
Mol Cancer Res ; 19(4): 688-701, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443114

RESUMEN

Specific biological properties of those circulating cancer cells that are the origin of brain metastases (BM) are not well understood. Here, single circulating breast cancer cells were fate-tracked during all steps of the brain metastatic cascade in mice after intracardial injection over weeks. A novel in vivo two-photon microscopy methodology was developed that allowed to determine the specific cellular and molecular features of breast cancer cells that homed in the brain, extravasated, and successfully established a brain macrometastasis. Those BM-initiating breast cancer cells (BMIC) were mainly originating from a slow-cycling subpopulation that included only 16% to 20% of all circulating cancer cells. BMICs showed enrichment of various markers of cellular stemness. As a proof of principle for the principal usefulness of this approach, expression profiling of BMICs versus non-BMICs was performed, which revealed upregulation of NDRG1 in the slow-cycling BMIC subpopulation in one BM model. Here, BM development was completely suppressed when NDRG1 expression was downregulated. In accordance, in primary human breast cancer, NDRG1 expression was heterogeneous, and high NDRG1 expression was associated with shorter metastasis-free survival. In conclusion, our data identify temporary slow-cycling breast cancer cells as the dominant source of brain and other metastases and demonstrates that this can lead to better understanding of BMIC-relevant pathways, including potential new approaches to prevent BM in patients. IMPLICATIONS: Cancer cells responsible for successful brain metastasis outgrowth are slow cycling and harbor stemness features. The molecular characteristics of these metastasis-initiating cells can be studied using intravital microscopy technology.


Asunto(s)
Neoplasias Encefálicas/secundario , Encéfalo/fisiopatología , Células Neoplásicas Circulantes/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Metástasis de la Neoplasia
6.
Neuro Oncol ; 23(5): 757-769, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33320195

RESUMEN

BACKGROUND: Malignant gliomas including glioblastomas are characterized by a striking cellular heterogeneity, which includes a subpopulation of glioma cells that becomes highly resistant by integration into tumor microtube (TM)-connected multicellular networks. METHODS: A novel functional approach to detect, isolate, and characterize glioma cell subpopulations with respect to in vivo network integration is established, combining a dye staining method with intravital two-photon microscopy, Fluorescence-Activated Cell Sorting (FACS), molecular profiling, and gene reporter studies. RESULTS: Glioblastoma cells that are part of the TM-connected tumor network show activated neurodevelopmental and glioma progression gene expression pathways. Importantly, many of them revealed profiles indicative of increased cellular stemness, including high expression of nestin. TM-connected glioblastoma cells also had a higher potential for reinitiation of brain tumor growth. Long-term tracking of tumor cell nestin expression in vivo revealed a stronger TM network integration and higher radioresistance of the nestin-high subpopulation. Glioblastoma cells that were both nestin-high and network-integrated were particularly able to adapt to radiotherapy with increased TM formation. CONCLUSION: Multiple stem-like features are strongly enriched in a fraction of network-integrated glioma cells, explaining their particular resilience.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Encéfalo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioblastoma/genética , Glioma/genética , Humanos , Células Madre Neoplásicas , Nestina/genética
7.
Blood ; 137(9): 1219-1232, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33270819

RESUMEN

Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.


Asunto(s)
Coagulación Sanguínea , Neoplasias Encefálicas/sangre , Neoplasias de la Mama/patología , Melanoma/patología , Células Neoplásicas Circulantes/patología , Trombosis/sangre , Animales , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/patología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/complicaciones , Puntos de Control del Ciclo Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Melanoma/sangre , Melanoma/complicaciones , Ratones , Trombosis/etiología , Trombosis/patología , Factor de von Willebrand/análisis
8.
Theranostics ; 10(4): 1873-1883, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042342

RESUMEN

Rationale: Glioblastoma is the most frequent, primary brain tumor that is characterized by a highly immunosuppressive tumor microenvironment (TME). The TME plays a key role for tumor biology and the effectiveness of immunotherapies. Composition of the TME correlates with overall survival and governs therapy response. Non invasive assessment of the TME has been notoriously difficult. Methods: We have designed an in vivo imaging approach to non invasively visualize innate immune cell dynamics in the TME in a mouse glioma model by correlated MRI and multiphoton microscopy (MR-MPM) using a bimodal, fluorescently labeled iron oxide nanoparticle (NP). The introduction of Teflon cranial windows instead of conventional Titanium rings dramatically reduced susceptibility artifacts on MRI and allowed longitudinal MR-MPM imaging for innate immune cell tracking in the same animal. Results: We visualized tumor associated macrophage and microglia (TAM) dynamics in the TME and dissect the single steps of NP uptake by blood-born monocytes that give rise to tumor-associated macrophages. Next to peripheral NP-loading, we identified a second route of direct nanoparticle uptake via the disrupted blood-brain barrier to directly label tissue resident TAMs. Conclusion: Our approach allows innate immune cell tracking by MRI and multiphoton microscopy in the same animal to longitudinally investigate innate immune cell dynamics in the TME.


Asunto(s)
Glioma/diagnóstico por imagen , Inmunidad Innata/inmunología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microambiente Tumoral/inmunología , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/fisiopatología , Neoplasias Encefálicas/patología , Rastreo Celular/instrumentación , Glioma/patología , Glioma/ultraestructura , Inmunidad Innata/fisiología , Inmunidad Innata/efectos de la radiación , Inmunoterapia/métodos , Macrófagos/inmunología , Nanopartículas Magnéticas de Óxido de Hierro/química , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Nanopartículas/administración & dosificación , Nanopartículas/química
9.
Sci Rep ; 9(1): 11757, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409816

RESUMEN

Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular remodeling. To fully comprehend the structural and functional properties of the resulting vascular network, it needs to be studied collectively by considering both geometric and topological properties. Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their respective cores, and healthy brain hemispheres were modeled as complex networks and quantified with fundamental topological measures. All individual vessel segments were further quantified geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A network topology analysis revealed a clear decomposition of large modular structures and hierarchical network organization, while preserving most fundamental topological classifications, in both tumor models with distinct growth patterns. These results augment our understanding of cerebrovascular networks and offer a topological assessment of glioma-induced vascular remodeling. The findings may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic interventions such as radiation or antiangiogenic therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Circulación Cerebrovascular , Conectoma , Glioblastoma/patología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Femenino , Glioblastoma/irrigación sanguínea , Xenoinjertos , Humanos , Masculino , Ratones
10.
Cancers (Basel) ; 11(3)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845704

RESUMEN

Antiangiogenic strategies have not shown striking antitumor activities in the majority of glioma patients so far. It is unclear which antiangiogenic combination regimen with standard therapy is most effective. Therefore, we compared anti-VEGF-A, anti-Ang2, and bispecific anti-Ang-2/VEGF-A antibody treatments, alone and in combination with radio- or temozolomide (TMZ) chemotherapy, in a malignant glioma model using multiparameter two-photon in vivo microscopy in mice. We demonstrate that anti-Ang-2/VEGF-A lead to the strongest vascular changes, including vascular normalization, both as monotherapy and when combined with chemotherapy. The latter was accompanied by the most effective chemotherapy-induced death of cancer cells and diminished tumor growth. This was most probably due to a better tumor distribution of the drug, decreased tumor cell motility, and decreased formation of resistance-associated tumor microtubes. Remarkably, all these parameters where reverted when radiotherapy was chosen as combination partner for anti-Ang-2/VEGF-A. In contrast, the best combination partner for radiotherapy was anti-VEGF-A. In conclusion, while TMZ chemotherapy benefits most from combination with anti-Ang-2/VEGF-A, radiotherapy does from anti-VEGF-A. The findings imply that uninformed combination regimens of antiangiogenic and cytotoxic therapies should be avoided.

11.
Dev Cell ; 45(1): 33-52.e12, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29634935

RESUMEN

Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Adhesión Celular , Hemodinámica , Neoplasias Pulmonares/patología , Melanoma/patología , Células Neoplásicas Circulantes/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Ciclo Celular , Circulación Cerebrovascular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Neoplásicas Circulantes/metabolismo , Estudios Retrospectivos , Células Tumorales Cultivadas , Pez Cebra
12.
MAGMA ; 31(4): 531-551, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29478154

RESUMEN

OBJECTIVES: Spin dephasing of the local magnetization in blood vessel networks can be described in the static dephasing regime (where diffusion effects may be ignored) by the established model of Yablonskiy and Haacke. However, for small capillary radii, diffusion phenomena for spin-bearing particles are not negligible. MATERIAL AND METHODS: In this work, we include diffusion effects for a set of randomly distributed capillaries and provide analytical expressions for the transverse relaxation times T2* and T2 in the strong collision approximation and the Gaussian approximation that relate MR signal properties with microstructural parameters such as the mean local capillary radius. RESULTS: Theoretical results are numerically validated with random walk simulations and are used to calculate capillary radius distribution maps for glioblastoma mouse brains at 9.4 T. For representative tumor regions, the capillary maps reveal a relative increase of mean radius for tumor tissue towards healthy brain tissue of [Formula: see text] (p < 0.001). CONCLUSION: The presented method may be used to quantify angiogenesis or the effects of antiangiogenic therapy in tumors whose growth is associated with significant microvascular changes.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Vasos Sanguíneos/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Capilares , Línea Celular Tumoral , Simulación por Computador , Difusión , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Desnudos , Modelos Estadísticos , Distribución Normal
13.
Neuro Oncol ; 20(6): 743-752, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29040782

RESUMEN

Patients with glioblastoma (GBM) have a universally poor prognosis and are in urgent need of effective treatment strategies. Recent advances in sequencing techniques unraveled the complete genomic landscape of GBMs and revealed profound heterogeneity of individual tumors even at the single cell level. Genomic profiling has detected epidermal growth factor receptor (EGFR) gene alterations in more than half of GBMs. Major genetic events include amplification and mutation of EGFR. Yet, treatment strategies targeting EGFR have thus far failed in clinical trials. In this review, we discuss the clonal and functional heterogeneity of EGFRs in GBM development and critically reassess the potential of EGFRs as therapeutic targets.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Glioblastoma/patología , Humanos , Pronóstico
14.
Front Neurosci ; 12: 1004, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686972

RESUMEN

Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.

15.
Dev Cell ; 42(5): 462-478.e7, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28867486

RESUMEN

Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neovascularización Fisiológica , Fosfoproteínas/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Citoesqueleto de Actina/genética , Animales , Animales Recién Nacidos , Encéfalo/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/genética , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Silenciador del Gen , Aparato de Golgi/metabolismo , Ratones , Modelos Biológicos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Transducción de Señal/genética , Transactivadores , Transcripción Genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Señalizadoras YAP
16.
J Neurosci ; 37(29): 6837-6850, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28607172

RESUMEN

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica
17.
Methods Cell Biol ; 140: 277-301, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28528637

RESUMEN

Combining in vivo imaging with electron microscopy (EM) uniquely allows monitoring rare and critical events in living tissue, followed by their high-resolution visualization in their native context. A major hurdle, however, is to keep track of the region of interest (ROI) when moving from intravital microscopy (IVM) to EM. Here, we present a workflow that relies on correlating IVM and microscopic X-ray computed tomography to predict the position of the ROI inside the EM-processed sample. The ROI can then be accurately and quickly targeted using ultramicrotomy and imaged using EM. We outline how this procedure is used to retrieve and image tumor cells arrested in the vasculature of the mouse brain.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica/métodos , Microtomografía por Rayos X , Animales , Línea Celular Tumoral , Humanos , Microscopía Intravital , Ratones , Resinas Sintéticas/química , Rayos X
18.
Neuro Oncol ; 19(10): 1316-1326, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419303

RESUMEN

BACKGROUND: Primary and adaptive resistance against chemo- and radiotherapy and local recurrence after surgery limit the benefits from these standard treatments in glioma patients. Recently we found that glioma cells can extend ultra-long membrane protrusions, "tumor microtubes" (TMs), for brain invasion, proliferation, and interconnection of single cells to a syncytium that is resistant to radiotherapy. We wondered whether TMs also convey resistance to the other 2 standard treatment modalities. METHODS: Patient-derived glioblastoma stemlike cell (GBMSC) lines were implanted under a cranial window in mice. Longitudinal in vivo two-photon laser scanning microscopy was used to follow tumor growth, including the fate of single glioma cells over months. RESULTS: After a cylindrical surgical lesion, GBMSCs increasingly extended TMs toward the lesion area, which contributed to the repopulation of this area over many weeks. In fact, an excessive "healing response" was observed in which tumor cell densities significantly exceeded those of unlesioned brain regions over time. Inhibition of TM formation and function by genetic targeting of growth associated protein-43 robustly suppressed this surgery-induced tumor growth reaction, in contrast to standard postsurgical anti-inflammatory treatment with dexamethasone. After one cycle of temozolomide chemotherapy, intra- and intertumoral heterogeneity of TM formation and interconnection was strongly associated with therapy response: when tumor cells were integrated in TM networks, they were more likely to resist chemotherapy. CONCLUSION: TMs can contribute to the resistance against standard treatment modalities in gliomas. Specific inhibition of TMs is a promising approach to reduce local recurrence after surgery and lower resistance to chemotherapy.


Asunto(s)
Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dacarbazina/farmacología , Glioma/terapia , Humanos , Ratones Desnudos , Temozolomida
19.
Clin Cancer Res ; 22(24): 6078-6087, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521448

RESUMEN

PURPOSE: The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. EXPERIMENTAL DESIGN: We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. RESULTS: Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. CONCLUSIONS: Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953.


Asunto(s)
Barrera Hematoencefálica/patología , Neoplasias Encefálicas/patología , Encéfalo/patología , Proliferación Celular/fisiología , Animales , Transporte Biológico/fisiología , Permeabilidad Capilar/fisiología , Línea Celular Tumoral , Humanos , Melanoma/patología , Ratones , Ratones Desnudos
20.
Neuro Oncol ; 18(12): 1644-1655, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27286795

RESUMEN

BACKGROUND: Amplification of the epidermal growth factor receptor (EGFR) and its mutant EGFRvIII are among the most common genetic alterations in glioblastoma (GBM), the most frequent and most aggressive primary brain tumor. METHODS: In the present work, we analyzed the clonal evolution of these major EGFR aberrations in a small cohort of GBM patients using a unique surgical multisampling technique. Furthermore, we overexpressed both receptors separately and together in 2 patient-derived GBM stem cell lines (GSCs) to analyze their functions in vivo in orthotopic xenograft models. RESULTS: In human GBM biopsies, we identified EGFR amplification as an early event because EGFRvIII mutations emerge from intratumoral heterogeneity later in tumor development. To investigate the biological relevance of this distinct developmental pattern, we established experimental model systems. In these models, EGFR+ tumor cells showed activation of classical downstream signaling pathways upon EGF stimulation and displayed enhanced invasive growth without evidence of angiogenesis in vivo. In contrast, EGFRvIII+ tumors were driven by activation of the prototypical Src family kinase c-Src that promoted VEGF secretion leading to angiogenic tumor growth. CONCLUSIONS: The presented work shows that sequential EGFR amplification and EGFRvIII mutations might represent concerted evolutionary events that drive the aggressive nature of GBM by promoting invasion and angiogenesis via distinct signaling pathways. In particular, c-SRC may be an attractive therapeutic target for tumors harboring EGFRvIII as we identified this protein specifically mediating angiogenic tumor growth downstream of EGFRvIII.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Evolución Molecular , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Imagen Multimodal , Mutación , Invasividad Neoplásica , Análisis de Supervivencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...