Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicon ; 240: 107626, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290609

RESUMEN

Gymnopilins are long chain oligoisoprenoids produced through the condensation of isoprene units from MEV and MEP biosynthetic pathways. In Gymnopilus, these carotenoid-like molecules are recognized as major compounds in some species. In the present study, oligoisoprenoids derived from gymnopilins were dereplicated from Gymnopilus imperialis, a mushroom-forming basidiomycete, using liquid chromatographic coupled with high-resolution mass spectrometry (tandem LC-HRMS/MS) and GNPS. From the dichloromethane extract (Gym-DCM) of G. imperialis we annotated 3 oligoisoprenoids from the GNPS molecular library spectra and 15 analogs from the curation of the molecular networking. Data from NMR spectroscopic of the extract confirmed the annotation of the metabolites. Based on the literature data suggesting the neurotoxic effect of gymnopilins, we investigated the effects of the administering different doses of gymnopilin extracts (1, 4 or 10 mg/kg) and diazepam (4 mg/kg) on the acquisition of object recognition memory (ORM) in mice. By studying novel object recognition memory (ORM), a type of non-aversive memory. ORM was assessed based on the total time of spontaneous exploration of both objects, the discrimination index (DI), and the frequency of contact with both objects. Our present findings reveal, for the first time, that gymnopilins treatment before training modulates ORM in a dose-dependent manner. It is also suggested that differential effects on memory might be related to differential effects on GABAA receptors but do not exclude its effects in other neurotransmitter systems. Another class of secondary metabolites, alkaloids, might modulate AChR, which is essential for maintaining object recognition memory over time.


Asunto(s)
Agaricales , Basidiomycota , Ratones , Animales , Agaricales/química , Ansiedad , Conducta Exploratoria
2.
Learn Mem ; 30(4): 85-95, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37072140

RESUMEN

Long-term memory (LTM) formation is dependent on neurochemical changes that guarantee that a recently formed memory (short-term memory [STM]) remains in the specific neural circuitry via the consolidation process. The persistence of recognition memory has been evidenced by using behavioral tagging in young adult rats, but it has not been effective on aging. Here, we investigated the effects of treatment with a standardized extract of Ginkgo biloba (EGb) associated with novelty on the consolidation of object location memory (OLM) and its persistence after weak training of spatial object preference in young adult and aged rats. The object location task used in this study included two habituation sessions, training sessions associated or not associated with EGb treatment and contextual novelty, and short-term or long-term retention testing sessions. Altogether, our data showed that treatment with EGb associated with novelty close to the time of encoding resulted in STM that lasted for 1 h and persisted for 24 h for both young adult and aged rats. In aged rats, the cooperative mechanisms induced robust long-term OLM. Our findings support and extend our knowledge about recognition memory in aged rats and the modulating effects of EGb treatment and contextual novelty on the persistence of memory.


Asunto(s)
Ginkgo biloba , Extractos Vegetales , Ratas , Animales , Ratas Wistar , Extractos Vegetales/farmacología , Reconocimiento en Psicología , Memoria a Largo Plazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA